Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 24141, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063004

RESUMO

Long noncoding RNAs (lncRNAs) are non-protein coding RNAs regulating gene expression. Although for some lncRNAs a relevant role in hypoxic endothelium has been shown, the regulation and function of lncRNAs is still largely unknown in the vascular physio-pathology. Taking advantage of next-generation sequencing techniques, transcriptomic changes induced by endothelial cell exposure to hypoxia were investigated. Paired-end sequencing of polyadenylated RNA derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O2 or normoxia was performed. Bioinformatics analysis identified ≈2000 differentially expressed genes, including 122 lncRNAs. Extensive validation was performed by both microarray and qPCR. Among the validated lncRNAs, H19, MIR210HG, MEG9, MALAT1 and MIR22HG were also induced in a mouse model of hindlimb ischemia. To test the functional relevance of lncRNAs in endothelial cells, knockdown of H19 expression was performed. H19 inhibition decreased HUVEC growth, inducing their accumulation in G1 phase of the cell cycle; accordingly, p21 (CDKN1A) expression was increased. Additionally, H19 knockdown also diminished HUVEC ability to form capillary like structures when plated on matrigel. In conclusion, a high-confidence signature of lncRNAs modulated by hypoxia in HUVEC was identified and a significant impact of H19 lncRNA was shown.


Assuntos
Hipóxia Celular , RNA Longo não Codificante/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Pontos de Checagem da Fase G1 do Ciclo Celular , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Isquemia/genética , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligorribonucleotídeos Antissenso , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Transcriptoma
2.
Cell Death Differ ; 18(10): 1628-39, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21527937

RESUMO

We examined the effect of reactive oxygen species (ROS) on MicroRNAs (miRNAs) expression in endothelial cells in vitro, and in mouse skeletal muscle following acute hindlimb ischemia. Human umbilical vein endothelial cells (HUVEC) were exposed to 200 µM hydrogen peroxide (H(2)O(2)) for 8 to 24 h; miRNAs profiling showed that miR-200c and the co-transcribed miR-141 increased more than eightfold. The other miR-200 gene family members were also induced, albeit to a lower level. Furthermore, miR-200c upregulation was not endothelium restricted, and occurred also on exposure to an oxidative stress-inducing drug: 1,3-bis(2 chloroethyl)-1nitrosourea (BCNU). miR-200c overexpression induced HUVEC growth arrest, apoptosis and senescence; these phenomena were also induced by H(2)O(2) and were partially rescued by miR-200c inhibition. Moreover, miR-200c target ZEB1 messenger RNA and protein were downmodulated by H(2)O(2) and by miR-200c overexpression. ZEB1 knockdown recapitulated miR-200c-induced responses, and expression of a ZEB1 allele non-targeted by miR-200c, prevented miR-200c phenotype. The mechanism of H(2)O(2)-mediated miR-200c upregulation involves p53 and retinoblastoma proteins. Acute hindlimb ischemia enhanced miR-200c in wild-type mice skeletal muscle, whereas in p66(ShcA -/-) mice, which display lower levels of oxidative stress after ischemia, upregulation of miR-200c was markedly inhibited. In conclusion, ROS induce miR-200c and other miR-200 family members; the ensuing downmodulation of ZEB1 has a key role in ROS-induced apoptosis and senescence.


Assuntos
Apoptose/genética , Senescência Celular/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carmustina/farmacologia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Citometria de Fluxo , Radicais Livres/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , MicroRNAs/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
3.
Br J Pharmacol ; 152(2): 216-22, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17592507

RESUMO

BACKGROUND AND PURPOSE: Pathological cardiac hypertrophy is associated with the expression of a gene profile reminiscent of foetal development. The non selective beta-adrenoceptor antagonist propranolol is able to blunt cardiomyocyte hypertrophic response in pressure-overloaded hearts. It remains to be determined whether propranolol also attenuates the expression of hypertrophy-associated foetal genes. EXPERIMENTAL APPROACH: To address this question, the foetal gene programme, of which atrial natriuretic peptide (ANP), the beta-isoform of myosin heavy chain (beta-MHC), and the alpha-skeletal muscle isoform of actin (skACT) are classical members, was induced by thoracic aortic coarctation (TAC) in C57BL/6 mice, or by phenylephrine, a selective alpha(1)-adrenoceptor agonist, in cultured rat neonatal cardiomyocytes. KEY RESULTS: In TAC mice, the left ventricular weight-to-body weight (LVW/BW) ratio increased by 35% after 2 weeks. Levels of ANP, beta-MHC and skACT mRNA in the left ventricles increased 2.2-fold, 2.0-fold and 12.1-fold, respectively, whereas alpha-MHC and SERCA mRNA levels decreased by approximately 50%. Although propranolol blunted cardiomyocyte growth, with approximately an 11% increase in the LVW/BW ratio, it enhanced the expression of ANP, beta-MHC and skACT genes (10.5-fold, 27.7-fold and 22.7-fold, respectively). Propranolol also enhanced phenylephrine-stimulated ANP and beta-MHC gene expression in cultured cardiomyocytes. Similar results were obtained with metoprolol, a selective beta(1)-adrenoceptor antagonist, but not with ICI 118551, a beta(2)-adrenoceptor antagonist. CONCLUSIONS AND IMPLICATIONS: Propranolol enhances expression of the hypertrophy-associated foetal genes mainly via the beta(1)-adrenoceptor blockade. Our results also suggest that, in pressure-overloaded hearts, cardiomyocyte growth and foetal gene expression occur as independent processes.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Propranolol/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Células Cultivadas , Perfilação da Expressão Gênica , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...