Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38671904

RESUMO

Oxidative stress is pivotal in the pathology of many diseases. This study investigated the antioxidant phytochemistry of avocado (Persea americana Mill.) peel. Different solvent extracts (dichloromethane, ethyl acetate, methanol, and water) of avocado peel were subjected to total phenol and flavonoid quantification, as well as in vitro radical scavenging and ferric reducing evaluation. The methanol extract was subjected to gradient column chromatographic fractionation. Fraction 8 (eluted with hexane:chloroform:methanol volume ratio of 3:6.5:0.5, respectively) was subjected to LC-MS analysis. It was assessed for cellular inhibition of lipid peroxidation and lipopolysaccharide (LPS)-induced ROS and NO production. The DPPH radical scavenging mechanism of chlorogenic acid was investigated using Density Functional Theory (DFT). The methanol extract and fraction 8 had the highest phenol content and radical scavenging activity. Chlorogenic acid (103.5 mg/mL) and 1-O-caffeoylquinic acid (102.3 mg/mL) were the most abundant phenolics in the fraction. Fraction 8 and chlorogenic acid dose-dependently inhibited in vitro (IC50 = 5.73 and 6.17 µg/mL) and cellular (IC50 = 15.9 and 9.34 µg/mL) FeSO4-induced lipid peroxidation, as well as LPS-induced ROS (IC50 = 39.6 and 28.2 µg/mL) and NO (IC50 = 63.5 and 107 µg/mL) production, while modulating antioxidant enzyme activity. The fraction and chlorogenic acid were not cytotoxic. DFT analysis suggest that an electron transfer, followed by proton transfer at carbons 3'OH and 4'OH positions may be the radical scavenging mechanism of chlorogenic acid. Considering this study is bioassay-guided, it is logical to conclude that chlorogenic acid strongly influences the antioxidant capacity of avocado fruit peel.

2.
Int J Biol Macromol ; 206: 381-397, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202637

RESUMO

Biofilms are a global health concern because they are associated with chronic and recurrent infections as well as resistance to conventional antibiotics. The aim of this study was to prepare a nanogel for the co-delivery of NO and AMPs against bacteria and biofilms. The NO-releasing nanogel was prepared by crosslinking HA solution with divinyl sulfone and extensively characterized. The nanogel was found to be biocompatible, injectable and NO release from the gel was sustained over a period of 24 h. In vitro antibacterial studies showed that the NO-AMP-loaded nanogel exhibited a broad spectrum antibacterial/antibiofilm activity. The NO-releasing nanogel had a greater antibacterial effect when compared to NO alone with MIC values of 1.56, 0.78 and 0.39 µg/ml against Escherichia coli, Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa bacteria respectively. The antibiofilm results showed there was a 12.5 and 24-folds reduction in biofilms of MRSA, and P. aeruginosa respectively for catheters exposed to nanogel loaded with AMP/NO when compared to only NO, while a 7 and 9.4-folds reduction in biofilms of MRSA, and P. aeruginosa respectively was displayed by the nanogel loaded with only NO compared to only NO. The AMP/NO-releasing nanogel showed the potential to combat both biofilms and bacterial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Biofilmes , Escherichia coli , Ácido Hialurônico , Testes de Sensibilidade Microbiana , Nanogéis , Óxido Nítrico , Polietilenoglicóis , Polietilenoimina , Pseudomonas aeruginosa
3.
Artigo em Inglês | MEDLINE | ID: mdl-34643067

RESUMO

Rampant antimicrobial resistance calls for innovative strategies to effectively control bacterial infections, enhance antibacterial efficacy, minimize side effects, and protect existing antibiotics in the market. Therefore, to enhance the delivery of antibiotics and increase their bioavailability and accumulation at the site of infection, the surfaces of nano-drug delivery systems have been diversely modified. This strategy applies various covalent and non-covalent techniques to introduce specific coating materials that have been found to be effective against various sensitive and resistant microorganisms. In this review, we discuss the techniques of surface modification of nanocarriers loaded with antibacterial agents. Furthermore, saccharides, polymers, peptides, antibiotics, enzymes and cell membranes coatings that have been used for surface functionalization of nano-drug delivery systems are described, emphasizing current approaches for enhancing delivery, bioavailability, and efficacy of surface-modified antibacterial nanocarriers at infection sites. This article offers a critical overview of the potential of surface-modified antibacterial nanocarriers to overcome the limitations of conventional antibiotics in the treatment of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Antibacterianos , Infecções Bacterianas , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Sistemas de Liberação de Fármacos por Nanopartículas , Nanotecnologia
4.
ACS Omega ; 6(34): 21994-22010, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497894

RESUMO

Chronic wound infections caused by antibiotic-resistant bacteria have become a global health concern. This is attributed to the biofilm-forming ability of bacteria on wound surfaces, thus enabling their persistent growth. In most cases, it leads to morbidity and in severe cases mortality. Current conventional approaches used in the treatment of biofilm wounds are proving to be ineffective due to limitations such as the inability to penetrate the biofilm matrix; hence, biofilm-related wounds remain a challenge. Therefore, there is a need for more efficient alternate therapeutic interventions. Hydrogen peroxide (HP) is a known antibacterial/antibiofilm agent; however, prolonged delivery has been challenging due to its short half-life. In this study, we developed a hydrogel for the codelivery of HP and antimicrobial peptides (Ps) against bacteria, biofilms, and wound infection associated with biofilms. The hydrogel was prepared via the Michael addition technique, and the physiochemical properties were characterized. The safety, in vitro, and in vivo antibacterial/antibiofilm activity of the hydrogel was also investigated. Results showed that the hydrogel is biosafe. A greater antibacterial effect was observed with HP-loaded hydrogels (CS-HP; hydrogel loaded with HP and CS-HP-P; hydrogel loaded with HP and peptide) when compared to HP as seen in an approximately twofold and threefold decrease in minimum inhibitory concentration values against methicillin-resistant Staphylococcus aureus (MRSA) bacteria, respectively. Similarly, both the HP-releasing hydrogels showed enhanced antibiofilm activity in the in vivo study in mice models as seen in greater wound closure and enhanced wound healing in histomorphological analysis. Interestingly, the results revealed a synergistic antibacterial/antibiofilm effect between HP and P in both in vitro and in vivo studies. The successfully prepared HP-releasing hydrogels showed the potential to combat bacterial biofilm-related infections and enhance wound healing in mice models. These results suggest that the HP-releasing hydrogels may be a superior platform for eliminating bacterial biofilms without using antibiotics in the treatment of chronic MRSA wound infections, thus improving the quality of human health.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32808486

RESUMO

Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Antibacterianos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
J Biomol Struct Dyn ; 39(17): 6567-6584, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772814

RESUMO

The global antimicrobial resistance crisis has prompted worldwide efforts to develop new and more efficient antimicrobial compounds, as well as to develop new drug delivery strategies and targeting mechanisms. This study aimed to synthesize a novel polyethylene glycol-fusidic acid (PEG-FA) conjugate for self-assembly into nano-sized structures and explore its potential for simultaneously enhancing aqueous solubility and antibacterial activity of FA. In addition, the ability of PEG-FA to bind to HSA with lower affinity than FA is also investigated. Haemolysis and in vitro cytotoxicity studies confirmed superior biosafety of the novel PEG-FA compared to FA. The water solubility of FA after PEG conjugation was increased by 25-fold compared to the bare drug. PEG-FA nanoparticles displayed particle size, polydispersity index and zeta potential of 149.3 ± 0.21 nm, 0.267 ± 0.01 and 5.97 ± 1.03 mV, respectively. Morphology studies using high-resolution transmission electron microscope revealed a homogenous spherical shape of the PEG-FA nanoparticles. In silico studies showed that Van der Waals forces facilitated PEG-FA self-assembly. HSA binding studies showed that PEG-FA had very weak or no interaction with HSA using in silico molecular docking (-2.93 kcal/mol) and microscale thermophoresis (Kd=14999 ± 1.36 µM), which may prevent bilirubin displacement. Conjugation with PEG did not inhibit the antibacterial activity of FA but rather enhanced it by 2.5-fold against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, compared to the bare FA. These results show that PEG-FA can simultaneously enhance solubility and antibacterial activity of FA, whilst also reducing binding of HSA to decrease its side effects.


Assuntos
Ácido Fusídico , Staphylococcus aureus Resistente à Meticilina , Simulação de Acoplamento Molecular , Polímeros , Albumina Sérica , Solubilidade
7.
Pharmaceutics ; 12(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202629

RESUMO

Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.

8.
Eur J Pharmacol ; 883: 173348, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634438

RESUMO

The global pandemic of coronavirus disease 2019 (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 7,273,958 cases with almost over 413,372 deaths worldwide as per the WHO situational report 143 on COVID-19. There are no known treatment regimens with proven efficacy and vaccines thus far, posing an unprecedented challenge to identify effective drugs and vaccines for prevention and treatment. The urgency for its prevention and cure has resulted in an increased number of proposed treatment options. The high rate and volume of emerging clinical trials on therapies for COVID-19 need to be compared and evaluated to provide scientific evidence for effective medical options. Other emerging non-conventional drug discovery techniques such as bioinformatics and cheminformatics, structure-based drug design, network-based methods for prediction of drug-target interactions, artificial intelligence (AI) and machine learning (ML) and phage technique could provide alternative routes to discovering potent Anti-SARS-CoV2 drugs. While drugs are being repurposed and discovered for COVID-19, novel drug delivery systems will be paramount for efficient delivery and avoidance of possible drug resistance. This review describes the proposed drug targets for therapy, and outcomes of clinical trials that have been reported. It also identifies the adopted treatment modalities that are showing promise, and those that have failed as drug candidates. It further highlights various emerging therapies and future strategies for the treatment of COVID-19 and delivery of Anti-SARS-CoV2 drugs.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Pandemias , Pneumonia Viral , Betacoronavirus/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , SARS-CoV-2
9.
Int J Biol Macromol ; 147: 385-398, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926237

RESUMO

The development of novel materials is necessary for adequate delivery of drugs to combat the Methicillin-resistant Staphylococcus aureus (MRSA) burden due to the limitations of conventional methods and challenges associated with antimicrobial resistance. Hence, this study aimed to synthesise a novel oleylamine based zwitterionic lipid (OLA) and explore its potential to formulate chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (VM-OLA-LPHVs1) to deliver VM against MRSA. The OLA was synthesised, and the structure characterised by 1H NMR, 13C NMR, FT-IR and HR-MS. The preliminary biocompatibility of OLA and VM-OLA-LPHVs1 was evaluated on HEK-293, A-549, MCF-7 and HepG-2 cell lines using in vitro cytotoxicity assay. The VM-OLA-LPHVs1 were formulated by ionic gelation method and characterised in order to determine the hydrodynamic diameter (DH), morphology in vitro and in vivo antibacterial efficacy. The result of the in vitro cytotoxicity study revealed cell viability of above 75% in all cell lines when exposed to OLA and VM-OLA-LPHVs1, thus indicating their biosafety. The VM-OLA-LPHVs1 had a DH, polydispersity index (PDI), and EE% of 198.0 ± 14.04 nm, 0.137 ± 0.02, and 45.61 ± 0.54% respectively at physiological pH, with surface-charge (ζ) switching from negative at pH 7.4 to positive at pH 6.0. The VM release from the VM-OLA-LPHVs1 was faster at pH 6.0 compared to physiological pH, with 97% release after 72-h. The VM-OLA-LPHVs1 had a lower minimum inhibitory concentration (MIC) value of 0.59 µg/mL at pH 6.0 compared to 2.39 µg/mL at pH 7.4, against MRSA with 52.9-fold antibacterial enhancement. The flow cytometry study revealed that VM-OLA-LPHVs1 had similar bactericidal efficacy on MRSA compared to bare VM, despite an 8-fold lower VM concentration in the nanovesicles. Additionally, fluorescence microscopy study showed the ability of the VM-OLA-LPHVs1 to eliminate biofilms. The electrical conductivity, and protein/DNA concentration, increased and decreased respectively, as compared to bare VM which indicated greater MRSA membrane damage. The in vivo studies in a BALB/c mouse-infected skin model treated with VM-OLA-LPHVs1 revealed 95-fold lower MRSA burden compared to the group treated with bare VM. These findings suggest that OLA can be used as an effective novel material for complexation with biodegradable polymer chitosan (CHs) to form pH-responsive VM-OLA-LPHVs1 nanovesicles which show greater potential for enhancement and improvement of treatment of bacterial infections.


Assuntos
Antibacterianos , Quitosana , Portadores de Fármacos , Lipídeos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Nanopartículas , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Concentração de Íons de Hidrogênio , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Vancomicina/química , Vancomicina/farmacocinética , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...