Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chempluschem ; 88(9): e202300357, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572103

RESUMO

Molecular ruthenium cyclopentadienone complexes were employed for the first time as pre-catalysts in the homogeneously catalysed Aqueous Phase Reforming (APR) of glucose. Shvo's complex resulted the best pre-catalyst (loading 2 mol %) with H2 yields up to 28.9 % at 150 °C. Studies of the final mixture allowed to identify the catalyst's resting state as a mononuclear dicarbonyl complex in the extracted organic fraction. In situ NMR experiments and HPLC analyses on the aqueous fraction gave awareness of the presence of sorbitol, fructose, 5-hydroxymethylfurfural and furfural as final fate or intermediates in the transformations under APR conditions. These results were summarized in a proposed mechanism, with particular emphasis on the steps where hydrogen was obtained as the product. Benzoquinone positively affected the catalyst activation when employed as an equimolar additive.

2.
ChemSusChem ; 15(13): e202200228, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35385607

RESUMO

5-Hydroxymethylfufural (HMF) is an intriguing platform molecule that can be obtained from biomasses and that can lead to the production of a wide range of products, intermediates, or monomers. The presence of different moieties in HMF (hydroxy, aldehyde, furan ring) allows to carry out different transformations such as selective oxidations and hydrogenations, reductive aminations, etherifications, decarbonylations, and acetalizations. This is a great chance in a biorefinery perspective but requires the development of active and highly selective catalysts. In this view, homogeneous catalysis can lead to efficient conversion of HMF at mild reaction conditions. This Review discussed the recent achievements in homogeneous catalysts development and application to HMF transformations. The effects of metal nature, ligands, solvents, and reaction conditions were reported and critically reviewed. Current issues and future chances have been presented to drive future studies toward more efficient and scalable processes.


Assuntos
Furaldeído , Biomassa , Catálise , Furaldeído/análogos & derivados , Hidrogenação
3.
Nanomaterials (Basel) ; 13(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615963

RESUMO

Green hydrogen introduction in hard-to-abate processes is held back by the cost of substituting steam reforming plants with electrolyzers. However, green hydrogen can be integrated in properly modified reforming processes. The process proposed here involves the substitution of steam reforming with oxy-reforming, which is the coupling of the former with catalytic partial oxidation (CPO), exploiting the pure oxygen coproduced during electrolysis to feed CPO, which allows for better heat exchange thanks to its exothermic nature. With the aim of developing tailored catalysts for the oxy-reforming process, Ce0.5Zr0.5O2 was synthetized by microemulsion and impregnated with Rh. The Ce-based supports were calcined at different temperatures (750 and 900 °C) and the catalysts were reduced at 750 °C or 500 °C. Tuning the calcination temperature allowed for an increase in the support surface area, resulting in well-dispersed Rh species that provided a high reducibility for both the metal active phase and the Ce-based support. This allowed for an increase in methane conversion under different conditions of contact time and pressure and the outperformance of the other catalysts. The higher activity was related to well-dispersed Rh species interacting with the support that provided a high concentration of surface OH* on the Ce-based support and increased methane dissociation. This anticipated the occurrence and the extent of steam reforming over the catalytic bed, producing a smoother thermal profile.

4.
ACS Appl Mater Interfaces ; 13(48): 57451-57461, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34825818

RESUMO

In this work, four different 4 cm2-sized nanostructured Cu-based electrocatalysts have been designed by a one-step electrodeposition process of Cu metal on a three-dimensional carbonaceous membrane. One consisted of Cu0, and the other three were obtained by further simple oxidative treatments. Morphological, structural, and electrochemical investigations on the four materials were carried out by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, linear sweep voltammetry, and potential-controlled electrolysis. All the electrocatalysts showed promising catalytic activities toward CO2 electroreduction in liquid phase, with a remarkable selectivity toward acetic acid achieved when using the oxidized materials. In particular, the best electrocatalytic activity was observed for the Cu2O-Cu0 catalyst, working at a relatively low potential (-0.4 V vs RHE), which exhibited a stable and low current density of 0.46 mA cm-2 and a productivity of 308 µmol gcat-1 h-1. These results were attributed to the nanostructured morphology that is characterized by many void spaces and by a high surface area, which should guarantee a large number of CuI and Cu0 catalytic active sites. Moreover, kinetic analyses and preliminary studies about catalyst regeneration highlighted the stability of the best-performing catalyst.

5.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947102

RESUMO

Glycerol aqueous phase reforming (APR) produces hydrogen and interesting compounds at relatively mild temperatures. Among APR catalysts investigated in literature, little attention has been given to Pt supported on TiO2. Therefore, herein we propose an innovative titania support which can be obtained through an optimized microemulsion technique. This procedure provided high surface area titania nanospheres, with a peculiar high density of weak acidic sites. The material was tested in the catalytic glycerol APR after Pt deposition. A mechanism hypothesis was drawn, which evidenced the pathways giving the main products. When compared with a commercial TiO2 support, the synthetized titania provided higher hydrogen selectivity and glycerol conversion thanks to improved catalytic activity and ability to prompt consecutive dehydrogenation reactions. This was correlated to an enhanced cooperation between Pt nanoparticles and the acid sites of the support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...