Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023970

RESUMO

Screen-printed membrane sensors based on the use of paper and ceramic substrates are fabricated, characterized, and used for rapid batch and continuous monitoring of CrIII in the form of CrO42- in some industrial products and wastewater samples. Strips of paper and ceramic platforms (15 × 5 mm) were covered with conductive carbon paint and then modified with polyaniline (PANI) film, to act as an ion-to-electron transducer, followed by a drop casting of plasticized poly (vinyl chloride) (PVC) Rhodamine-B chromate membrane as a recognition sensing material. In a 5.0 mmol L-1 Trizma buffer solution of pH ~8, the fabricated paper and ceramic based membrane sensors exhibited a near Nernstian response for CrVI ion with slopes of -29.7 ± 0.5 and -28.6 ± 0.3 mV decade-1, limit of detection 2.5 × 10-5 and 2.4 × 10-6 mol L-1 (1.3-0.12 µg mL-1), and linear concentration range 7.5 × 10-3-5.0 × 10-5 and 7.5 × 10-3-1.0 × 10-5 mol L-1 (390-0.5 µg mL-1), respectively. Both sensors exhibited fast and stable potentiometric response, excellent reproducibility, and good selectivity with respect to a number of common foreign inorganic species. Impedance spectroscopy and chronopotentiometry data revealed a small resistance and a larger double layer capacitance due to the presence of the intermediate polyaniline (PAN) conductive layer. Furthermore, the formation of a water layer between the ion selective membrane (ISM) and the underlying conductor polymer and between the conducting polymer and the carbon conducting surface was greatly reduced. The developed disposable solid-contact potentiometric sensors offer the advantages of simple design, long term potential stability, flexibility, miniaturization ability, short conditioning time, and cost effectiveness that enable mass production. The sensors were successfully used for static and hydrodynamic measurements of total chromium in some leather tanning wastewater and nickel-chrome alloy samples. The results compare favorably with data obtained by atomic absorption spectrometry.


Assuntos
Compostos de Anilina/química , Técnicas Biossensoriais/métodos , Cerâmica/química , Cromo/análise , Acidentes de Trabalho , Hidrodinâmica , Concentração de Íons de Hidrogênio , Nanopartículas , Papel , Plastificantes/química , Polímeros/química , Potenciometria , Espectrofotometria Atômica
2.
Nanomaterials (Basel) ; 9(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416119

RESUMO

Solid-contact potentiometric ion-selective electrodes (SC-ISEs) for thallium determination have been designed using multiwall carbon nanotubes (MWCNTs) as the ion-to-electron transducer. Dispersed MWCNTs were drop-casted over a gold plate electrode. Two different crown ethers were used in the sensing membrane for the recognition of thallium (I). Sensorsbased on dibenzo-18-crown-6 (DB18C6) as a neutral carrier and NaTPB as an anionic additive exhibited a near Nernstian response of 57.3 mV/decade towards Tl+ ions over the activity range 4.5 × 10-6-7.0 × 10-4 M, with a limit of detection of 3.2 × 10-7 M. The time required to achieve 95% of the steadyequilibrium potential was <10 s. The complex formation constant (log ßML) between dibenzo-18-crown-6 and thallium (I) (i.e., 5.99) was measured using the sandwich membrane technique. The potential response was pH independent over the range 3.0-9.5. The introduction of MWCNTs as an electron-ion-transducer layer between gold plate and the sensing membrane lead to a smaller membrane resistance and a large double layer capacitance, which was proven using impedance spectra and chronopotentiometry (i.e., 114.9 ± 12 kΩ, 52.1 ± 3.3 pF, 200 ± 13.2 kΩ, and 50 ± 4.2 µF). Additionally, reduction ofthe water layer between the sensing membrane and the underlying conductor wastested. Thus, it is clear that MWCNTs can be used as a transducing layer in SC-ISEs. The proposed sensor was introduced as an indicator electrode for potentiometric titration of single and ternary mixtures of I-, Br-, and S2- anions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA