Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850659

RESUMO

Adaptive machine learning has increasing importance due to its ability to classify a data stream and handle the changes in the data distribution. Various resources, such as wearable sensors and medical devices, can generate a data stream with an imbalanced distribution of classes. Many popular oversampling techniques have been designed for imbalanced batch data rather than a continuous stream. This work proposes a self-adjusting window to improve the adaptive classification of an imbalanced data stream based on minimizing cluster distortion. It includes two models; the first chooses only the previous data instances that preserve the coherence of the current chunk's samples. The second model relaxes the strict filter by excluding the examples of the last chunk. Both models include generating synthetic points for oversampling rather than the actual data points. The evaluation of the proposed models using the Siena EEG dataset showed their ability to improve the performance of several adaptive classifiers. The best results have been obtained using Adaptive Random Forest in which Sensitivity reached 96.83% and Precision reached 99.96%.

2.
Entropy (Basel) ; 24(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421496

RESUMO

Data stream mining techniques have recently received increasing research interest, especially in medical data classification. An unbalanced representation of the classification's targets in these data is a common challenge because classification techniques are biased toward the major class. Many methods have attempted to address this problem but have been exaggeratedly biased toward the minor class. In this work, we propose a method for balancing the presence of the minor class within the current window of the data stream while preserving the data's original majority as much as possible. The proposed method utilized similarity analysis for selecting specific instances from the previous window. This group of minor-class was then added to the current window's instances. Implementing the proposed method using the Siena dataset showed promising results compared to the Skew ensemble method and some other research methods.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2871-2874, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060497

RESUMO

Daily physical activities monitoring is benefiting the health care field in several ways, in particular with the development of the wearable sensors. This paper adopts effective ways to calculate the optimal number of the necessary sensors and to build a reliable and a high accuracy monitoring system. Three data mining algorithms, namely Decision Tree, Random Forest and PART Algorithm, have been applied for the sensors selection process. Furthermore, the deep belief network (DBN) has been investigated to recognise 33 physical activities effectively. The results indicated that the proposed method is reliable with an overall accuracy of 96.52% and the number of sensors is minimised from nine to six sensors.


Assuntos
Exercício Físico , Algoritmos , Mineração de Dados , Humanos , Monitorização Ambulatorial , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...