Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851491

RESUMO

Understanding how geography and human mobility shape the patterns and spread of infectious diseases such as COVID-19 is key to control future epidemics. An interesting example is provided by the second wave of the COVID-19 epidemic in Europe, which was facilitated by the intense movement of tourists around the Mediterranean coast in summer 2020. The Italian island of Sardinia is a major tourist destination and is widely believed to be the origin of the second Italian wave. In this study, we characterize the genetic variation among SARS-CoV-2 strains circulating in northern Sardinia during the first and second Italian waves using both Illumina and Oxford Nanopore Technologies Next Generation Sequencing methods. Most viruses were placed into a single clade, implying that despite substantial virus inflow, most outbreaks did not spread widely. The second epidemic wave on the island was actually driven by local transmission of a single B.1.177 subclade. Phylogeographic analyses further suggest that those viral strains circulating on the island were not a relevant source for the second epidemic wave in Italy. This result, however, does not rule out the possibility of intense mixing and transmission of the virus among tourists as a major contributor to the second Italian wave.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Epidemiologia Molecular , Itália/epidemiologia , Filogeografia , Variação Genética
2.
Ital J Food Saf ; 3(2): 1601, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-27800328

RESUMO

Edible lamellibranch molluscs can be involved in foodborne disease and infections of varying severity. They are filter feeding animals able to retain and concentrate in their organism bacteria, parasites, viruses and biotoxins marine algae present in their external environment. Major shellfish harvesting and relaying areas from different areas in Sardinia region were defined and studied by analysing different physicochemical parameters in the water and the levels of Escherichia coli (E. coli), Norovirus (NoVs) genogroup I (NoVGI), NoVs genogroup II (NoVGII) and hepatitis A virus (HAV) in the shellfish harvested and farmed from 2009 to 2011. During that period the identification of the viral agents was carried out by one step real-time reverse transcriptase-polymerase chain reaction and Escherichia coli according to ISO TS 16649-3:2005 standard method. A total of 1266 shellfish samples were tested for NoVGI, NoVGII, HAV and faecal indicators. Norovirus contamination was found in 337 samples (26.6%); only one sample of mussels was positive for HAV (0.08%); while E. coli prevalence was 3.8% in shellfish. The probability of observing shellfish samples positive for NoVs, HAV and E. coli presence was associated with harvesting, growing and relaying areas, period of sampling, environmental parameters, animal species (P<0.05). Although the higher prevalence rate of human enteropathogenic viruses was found in the winter period, we did not observe a significant relationship between the effect of seawater temperature (seasonality) and NoVs presence all over the study period; in fact, according to statistical analysis, the presence of human enteric viruses does not appear to be related to water temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...