Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20309, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985795

RESUMO

Nowadays, due to the various type of problems stemmed from using chemical compounds and fossil fuels which have widely influence on whole environment including acid rain, polar ice melting and etc., number of researches have been leading on replacing the nonrenewable energy sources with renewable ones in order to produce clean fuels. Among these, hydrogen emerges as a quintessential clean fuel, garnering substantial attention for its potential to be synthesized from the electric power generated by renewable sources like nuclear and solar energies. This is achieved through the employment of a proton exchange membrane water electrolysis (PEMWE) system, widely recognized as one of the most proficient and economically viable technologies for effecting the separation of H2O into H+ and OH-. In this study, the important affecting parameters on the anode side of catalyst in PEMWE and analyzed them by machine-learning (ML) algorithms through developing a data science (DS) procedure were discussed. Various machine learning models were subjected to comparison, wherein the Decision Tree models, specifically those configured with maximum depths of 3 and 4, emerged as the optimal choices, attaining a perfect 100% accuracy across both Dataset 1 and Dataset 2. Moreover, notable enhancements in accuracy values were observed for the Support Vector Machine (SVM) model, registering increments from 0.79 to 0.82 for Dataset 1 and 2, respectively. In stark contrast, the remaining models experienced a decrement in their accuracy scores. This phenomenon underscores the pivotal role played by the data generation process in rendering the models more faithful to real-world scenarios.

2.
Sci Rep ; 12(1): 20415, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437269

RESUMO

Amongst many chemical pollutants that cause environmental pollution, the presence of organic dyes in water resources can cause substantial health issues. Thus, owing to their mutagenicity and their adverse effects on human health, environment, and animals, they must be removed from industrial wastewater. In this study, UiO-66 metal-organic framework, as well as composite nanoparticles with carbonaceous materials such as MWCNTs-COOH and graphene oxide (GO) with different molar ratios (2.9 and 5.8 wt.%), were synthesized through solvothermal method since carbonaceous materials are an emerging material that demonstrates improvement in the properties of adsorbents. Then, the synthesized materials were utilized as a solid adsorbent for removing four different dyes including; anionic methyl red (MR), anionic methyl orange (MO), cationic methylene blue (MB), and cationic malachite green (MG) prepared from distilled water. The properties of prepared adsorbents were characterized via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Photoluminescence spectroscopy (PL), Brunauer-Emmett-Teller (BET), as well as surface area analyzer and energy dispersive spectroscopy (EDS-MAP). Further, the influences of various factors including initial concentrations of the dyes and adsorption process time on adsorption of dyes were investigated. Adsorption experiments indicated that synthesized adsorbents exhibited the highest adsorption efficiency towards MR and MO dyes. Moreover, the experimental adsorption results revealed that MWCNTs-UiO-66 nanocomposites could adsorb 98% of MR and MO as well as 72% of MB and 46% of MG. Furthermore, the kinetic and stability of the materials over time were investigated. To reach a clear picture, adsorption experiments demonstrated that the amount of dye uptake on adsorbents was enhanced by increasing the contact time as well as uptake of materials with time were stable for both cationic and anionic dyes. The MR, MO, and MB adsorption isotherms were fitted with the Langmuir and Freundlich models. The Langmuir showed the highest agreement in these dyes and MWCNTs-UiO-66 (2.9 and 5.8 wt.%) exhibited a maximum adsorption capacity of 105.26 mg/g for MR, while the MG isotherm was in line with the Langmuir model.


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Poluentes Químicos da Água , Humanos , Adsorção , Corantes/química , Poluentes Químicos da Água/química , Azul de Metileno/química , Ânions , Cátions
3.
Sci Rep ; 11(1): 24177, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921173

RESUMO

Various nanocomposites of TiO2-ZnO, TiO2-ZnO/CS, and TiO2-ZnO/CS-Gr with different molar ratios were synthesized by sol-gel and ultrasound-assisted methods and utilized under UV irradiation to enhance the photocatalytic degradation of tetracycline. Characterization of prepared materials were carried out by XRD, FT-IR, FE-SEM, EDX and BET techniques. The TiO2-ZnO with the 1:1 molar ratio supported with 1:2 weight ratio CS-Gr (T1‒Z1/CS1‒Gr2 sample) appeared as the most effective material at the optimized operational conditions including the tetracycline concentration of 20 mg/L, pH = 4, catalyst dosage of 0.5 g/L, and 3 h of irradiation time. As expected, the graphene had a significant effect in improving degradation results. The detailed performances of the T1‒Z1/CS1‒Gr2 were compared with ternary nanocomposites from EDX and BET results as well as from the degradation viewpoint. This novel photocatalyst can be effective in actual pharmaceutical wastewater treatment considering the applied operational parameters.

4.
RSC Adv ; 11(57): 36289-36304, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492754

RESUMO

This work aimed at developing a natural compound-based hydrogel adsorbent to remove diclofenac as a model pharmaceutical from water. First, graphene oxide-chitosan (GO-CTS) and amine graphene oxide-chitosan (AGO-CTS) hydrogel adsorbents were synthesized via a facile mechanical mixing method. The synthesized materials were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning and transmission electron microscopy (SEM and TEM), Raman spectroscopy, and thermogravimetric analysis (TGA) techniques. In the second stage, adsorption experiments were conducted to determine the best GO to CTS ratio and find the optimized adsorption parameters, including the initial drug concentration, adsorbent dosage, pH, and temperature. The results showed that the optimal GO to CTS mass ratio is 2 : 5 and thus the same ratio was selected as the AGO to CTS mass ratio to understand the effect of amine-functionalization on removal efficiency. The optimal adsorption parameters were determined to be pH of 5, C i of 100 ppm and dosage of 1.5 g L-1, where 90.42% and 97.06% removal was achieved for optimal GO-CTS and AGO-CTS hydrogel adsorbents, respectively. Langmuir and Freundlich isotherms models were employed to investigate the adsorption behavior of diclofenac onto the synthesized hydrogels. The results revealed that the adsorption tends to be of the monolayer type and homogeneous, as the results were in better accordance with the Langmuir model than the Freundlich model. The thermodynamics of adsorption demonstrated that the adsorption is exothermic, exhibiting higher removal efficiency at lower temperatures. Furthermore, Gibb's free energy change of adsorption (ΔG) suggested that the adsorption is spontaneous, being more spontaneous for AGO-CTS than GO-CTS hydrogels. Finally, the regeneration ability of the hydrogel adsorbents was studied in five consecutive cycles. The adsorbent maintained its efficiency at a relatively high level for three cycles but a considerable decrease was observed between the third and the fourth cycle, indicating that the hydrogels were recoverable for three cycles.

5.
Sci Rep ; 10(1): 4414, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157131

RESUMO

Transition metal sulfide semiconductors have achieved significant attention in the field of photocatalysis and degradation of pollutants. MoS2 with a two dimensional (2D) layered structure, a narrow bandgap and the ability of getting excited while being exposed to visible light, has demonstrated great potential in visible-light-driven photocatalysts. However, it possesses fast-paced recombination of charges. In this study, the coupled MoS2 nanosheets were synthesized with ZnO nanorods to develop the heterojunctions photocatalyst in order to obtain superior photoactivity. The charge transfer in this composite is not adequate to achieve desirable activity. Therefore, heterojunction was modified by reduced graphene oxide (RGO) nanosheets and carbon nanotubes (CNTs) to develop the RGO/ZnO/MoS2 and CNTs/ZnO/MoS2 ternary nanocomposites. The structure, morphology, composition, optical and photocatalytic properties of the as-fabricated samples were characterized through X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray (EDX), elemental mapping, Photoluminescence (PL), Ultraviolet-Visible spectroscopy (UV-VIS), and Brunauer-Emmett-Teller (BET) techniques. The photo-catalytic performance of all samples was evaluated through photodegradation of aniline in aqueous solution. The combination of RGO or CNTs into the ZnO/MoS2 greatly promoted the catalytic activity. However, the resulting RGO/ZnO/MoS2 ternary nanocomposites showed appreciably increased catalytic performance, faster than that of CNTs/ZnO/MoS2. Charge carrier transfer studies, the BET surface area analysis, and the optical studies confirmed this superiority. The role of operational variables namely, solution pH, catalyst dosage amount, and initial concentration of aniline was then investigated for obtaining maximum degradation. Complete degradation was observed, in the case of pH = 4, catalyst dosage of 0.7 g/L and aniline concentration of 80 ppm, and light intensity of 100 W. According to the results of trapping experiments, hydroxyl radical was found to be the main active species in the photocatalytic reaction. Meanwhile, a plausible mechanism was proposed for describing the degradation of aniline upon ternary composite. Moreover, the catalyst showed excellent reusability and stability after five consecutive cycles due to the synergistic effect between its components. Total-Organic-Carbon concentration (TOC) results suggested that complete mineralization of aniline occurred after 210 min of irradiation. Finally, a real petrochemical wastewater sample was evaluated for testing the catalytic ability of the as-fabricated composites in real case studies and it was observed that the process successfully quenched 100% and 93% of Chemical Oxygen Demand (COD) and TOC in the wastewater, respectively.

6.
J Environ Health Sci Eng ; 16(1): 41-54, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30258642

RESUMO

BACKGROUND: The aim of present work, was to synthesize the titanium nanoparticles (TNPs) and titanium nanotubes (TNTs) through the hydrothermal method with different precursors including the Titanium(IV) isopropoxide (TTIP) and Titanium(IV) bis(ammonium lactato)dihydroxide (TALH). METHODS: TiO2 nanostructures from different titania precursors as heterogeneous photocatalysis via hydrothermal method were synthesized. The as-prepared photocatalysts were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectra, surface area measurements, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The TiO2 photocatalysts were tested on the degradation of 4-Chlorophenol (4-CP) aqueous solution under UVC irradiation in a fabricated photoreactor. RESULTS: The effect of operating parameters including the; initial 4-CP concentration (50-150 mg/L), catalyst dosages (0-3 g/L) and solution pH (4-10) on the photocatalytic activity of the prepared catalysts were systematically investigated. The results show that amongst the TiO2 nanostructures under best conditions (initial 4-CP concentration of 50 mg/L, catalyst dosage of 2 g/L, pH of 4.0, Time of 180 min) TNT-P2 exhibited much higher photocatalytic degradation efficiency (82%) as compared with TNT-P1 (77%), TNP-P2 (51%), and TNP-P1 (48%). Moreover, the mechanism and tentative pathways of 4-CP degradation were explored. Finally, the kinetic study was performed and the Langmuir-Hinshelwood kinetic model was aptly fitted with the experimental data. CONCLUSION: The results of the photocatalytic activity measurement demonstrated that one-dimensional TNTs shows enhanced photocatalytic performance as compared to the TNPs, therefore, indicating the beneficial feature of TNTs as a photocatalyst for the degradation of pollutants. Besides, TiO2 nanostructures prepared from TALH precursor (TNT-P2 82%, TNP-P2 51%) has higher photocatalytic degradation efficiency as compared with TTIP precursors (TNT-P1 77%, TNP-P1 48%).

7.
RSC Adv ; 8(70): 40035-40053, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-35558237

RESUMO

ZnO/TiO2 anchored on a reduced graphene oxide (rGO) ternary nanocomposite heterojunction was synthesized via the multi-step method including hydrothermal, solvothermal and sol-gel methods. XRD, Raman, FESEM, EDX, Dot Mapping EDS, BET, FTIR, UV-VIS, TGA, and EIS techniques were utilized for characterizing as-synthesized catalysts. The XRD and Raman data proved the formation of anatase phase TiO2 and wurtzite phase ZnO in the prepared samples. Further, the UV-Vis spectrum confirmed that the band gap value of ZnO/TiO2 diminished on introduction of graphene oxide. Photocatalytic performance of the fabricated catalysts was investigated by decontamination of phenol in aqueous solutions. The effect of different operational factors such as pH, catalyst dosage, phenol concentration, and light illumination was investigated to find the optimum decontamination conditions. According to the results, complete degradation of phenol was achieved at pH = 4, catalyst dosage of 0.6 g L-1, light intensity of 150 W, and phenol initial concentration of 60 ppm at 160 min under visible light illumination. With the addition of graphene oxide to the composite, a significant increase was detected in the photocatalytic performance due to the higher available surface area and lower electron/hole recombination rate. In addition, the scavenging experiments revealed that the ·OH is responsible for the degradation of phenol during the reaction. The degradation mechanism, economic performance, mineralization, and recyclability were also investigated. Kinetic studies confirmed that photocatalytic degradation process followed the pseudo-first-order kinetic model. A case of real wastewater treatment was used to examine the performance of the catalyst for real case studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...