Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(33): 13015-13021, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35944017

RESUMO

Recently, metal halide perovskites (MHPs) have emerged as a new class of materials for optical and electronic applications such as solar cells and ionizing radiation detectors. Although the solution-processability of MHPs is among their greatest advantages, the solution chemistries of most metal halide systems and their relationship with the observed structural and chemical diversity are poorly understood. In this work, we study the solution chemistry of a model indium halide system, methylammonium (MA)-In-Br, using a combination of the UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS) measurements, small-angle X-ray scattering (SAXS), and density functional theory (DFT) calculations. Our results show that indium could form either octahedral [InBr63-] or tetrahedral [InBr4-] anions in solution or a combination of both, depending on the loading ratios of MABr and InBr3 reactants. Understanding the solution chemistry of this system and recognizing the optical fingerprints of these polyanions allow for targeted crystallization of two novel compounds: MAInBr4 featuring tetrahedral [InBr4-] anions and MA2InBr5 containing both octahedral [InBr63-] and tetrahedral [InBr4-] anions. Further increase of the MABr content leads to the formation of previously reported MA4InBr7, containing only octahedral [InBr63-] anions separated by Br- anions. Our results suggest that understanding the solution chemistry of multinary metal halide systems could be a valuable tool for discovering functional materials for practical applications.

2.
Inorg Chem ; 60(2): 1045-1054, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33397099

RESUMO

Low-dimensional hybrid organic-inorganic metal halides have received increased attention because of their outstanding optical and electronic properties. However, the most studied hybrid compounds contain lead and have long-term stability issues, which must be addressed for their use in practical applications. Here, we report a new zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissive InBr4- tetrahedral anions. The crystal structure of RInBr4 is composed of alternating layers of inorganic anions and organic cations along the crystallographic a axis. The resultant hybrid demonstrates bright-blue emission with Commission Internationale de l'Eclairage color coordinates of (0.19, 0.20) and a high photoluminescence quantum yield (PLQY) of 16.36% at room temperature, a 2-fold increase compared to the PLQY of 8.15% measured for the precursor organic salt RBr. On the basis of our optical spectroscopy and computational work, the organic component is responsible for the observed blue emission of the hybrid material. In addition to the enhanced light emission efficiency, the novel hybrid indium bromide demonstrates significantly improved environmental stability. These findings may pave the way for the consideration of hybrid organic In(III) halides for light emission applications.

3.
ACS Mater Au ; 1(1): 62-68, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855617

RESUMO

Recently, ternary copper(I) halides have emerged as alternatives to lead halide perovskites for light emission applications. Despite their high-efficiency photoluminescence (PL) properties, most copper(I) halides are blue emitters with unusually poor tunability of their PL properties. Here, we report the impact of substitution of copper with silver in the high-efficiency blue-emitting Cu(I) halides through hydrothermal synthesis and characterization of (NH4)2AgX3 (X = Br, I). (NH4)2AgX3 are found to exhibit contrasting light emission properties compared to the blue-emitting Cu(I) analogues. Thus, (NH4)2AgBr3 and (NH4)2AgI3 exhibit broadband whitish light emission at room temperature with PL maxima at 394 and 534 nm and full width at half-maximum values of 142 and 114 nm, respectively. Based on our combined experimental and computational results, the broadband emission in (NH4)2AgX3 is attributed to the presence of high-stability self-trapped excitons and defect-bound excitons. (NH4)2AgBr3 and (NH4)2AgI3 both have significantly improved air and moisture stability as compared to the related copper(I) halides, which are prone to degradation via oxidation. Our results suggest that silver halides should be considered alongside their copper analogues for high-efficiency light emission applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...