Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772348

RESUMO

Purpose 4D computed tomography (4DCT) is the clinical standard to image organ motion in radiotherapy, although it is limited in imaging breathing variability. We propose a method to transfer breathing motion across longitudinal imaging datasets to include intra-patient variability and verify its performance in lung cancer patients. Methods Five repeated control 4DCTs for 6 non-small cell lung cancer patients were combined into multi-breath datasets (m4DCT) by merging stages of deformable image registration to isolate respiratory motion. The displacement of the centre of mass of the primary tumour and its volume changes were evaluated to quantify intra-patient differences. Internal target volumes defined on the m4DCT were compared with those conventionally drawn on the 4DCT. Results Motion analysis suggests no discontinuity at the junction between successive breaths, confirming the method's ability to merge repeated imaging into a continuum. Motion (variability) is primarily in superior-inferior direction and goes from 14.4 mm (8.7 mm) down to 0.1 mm (0.6 mm), respectively for tumours located in the lower lobes or most apical ones. On average, up to 65% and 74% of the tumour volume was subject to expansion or contraction in the inhalation and exhalation phases. These variations lead to an enlargement of the ITV up to 8% of its volume in our dataset. Conclusion 4DCT can be extended to model variable breathing motion by adding synthetic phases from multiple time-resolved images. The inclusion of this improved knowledge of patients' breathing allows better definition of treatment volumes and their margins for radiation therapy. .

2.
Phys Imaging Radiat Oncol ; 29: 100529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235286

RESUMO

Background and purpose: Imaging of respiration-induced anatomical changes is essential to ensure high accuracy in radiotherapy of lung cancer. We expanded here on methods for retrospective reconstruction of time-resolved volumetric magnetic resonance (4DMR) of the thoracic region and benchmarked the results against 4D computed tomography (4DCT). Materials and method: MR data of six lung cancer patients were collected by interleaving cine-navigator images with 2D data frame images, acquired across the thorax. The data frame images have been stacked in volumes based on a similarity metric that considers the anatomical deformation of lungs, while addressing ambiguities in respiratory phase detection and interpolation of missing data. The resulting images were validated against cine-navigator images and compared to paired 4DCTs in terms of amplitude and period of motion, assessing differences in internal target volume (ITV) margin definition. Results: 4DMR-based motion amplitude was on average within 1.8 mm of that measured in the corresponding 2D cine-navigator images. In our dataset, the 4DCT motion and the 4DMR median amplitude were always within 3.8 mm. The median period was generally close to CT references, although deviations up to 24 % have been observed. These changes were reflected in the ITV, which was generally larger for MRI than for 4DCT (up to 39.7 %). Conclusions: The proposed algorithm for retrospective reconstruction of time-resolved volumetric MR provided quality anatomical images with high temporal resolution for motion modelling and treatment planning. The potential for imaging organ motion variability makes 4DMR a valuable complement to standard 4DCT imaging.

3.
Med Phys ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043079

RESUMO

BACKGROUND: Robotic C-arm cone-beam computed tomography (CBCT) scanners provide fast in-room imaging in radiotherapy. Their mobility extends beyond performing a gantry rotation, but they might encounter obstructions to their motion which limit the gantry angle range. The axial field-of-view (FOV) of a reconstructed CBCT image depends on the acquisition geometry. When imaging a large anatomical location, such as the thorax, abdomen, or pelvis, a centered cone beam might be insufficient to acquire untruncated projection images. Some CBCT scanners can laterally displace their detector and collimate the beam to increase the FOV, but the gantry must then perform a 360° rotation to provide complete data for reconstruction. PURPOSE: To extend the FOV of a CBCT image with a single short scan (gantry angle range of 180 ∘ + $180^{\circ}+$ fan angle) using two complementary short scans. METHODS: We defined an acquisition protocol using two short scans during which the source follows the same trajectory and where the detector has equal and opposite tilt and/or offset between the two scans, which we refer to as complementary scans. We created virtual acquisitions using a Monte Carlo simulator on a digital anthropomorphic phantom and on a computed tomography (CT) scan of a patient abdomen. For our proposed method, each simulation produced two complementary sets of projections, which were weighted for redundancies and used to reconstruct one CBCT image. We compared the resulting images to the ground truth phantoms and simulations of conventional scans. RESULTS: Reconstruction artifacts were slightly more prominent in the complementary scans w.r.t. a complete scan with untruncated projections but matched those in a single short scan without truncation. When analyzing reconstructed scans from simulated projections with scatter and corrected with prior CT information, we found a global agreement between complementary and conventional scan approaches. CONCLUSIONS: When dealing with a limited range of motion of the gantry of a CBCT scanner, two complementary short scans are a technically valid alternative to a full 360° scan with equal FOV. This approach enables FOV extension without collisions or hardware upgrades.

4.
Phys Imaging Radiat Oncol ; 28: 100517, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38026085

RESUMO

Background and purpose: An optical tracking system for high-precision measurement of eye position and orientation during proton irradiation of intraocular tumors was designed. The system performed three-dimensional (3D) topography of the anterior eye segment using fringe pattern analysis based on Fourier Transform Method (FTM). Materials and methods: The system consisted of four optical cameras and two projectors. The design and modifications to the FTM pipeline were optimized for the realization of a reliable measurement system. Of note, phase-to-physical coordinate mapping was achieved through the combination of stereo triangulation and fringe pattern analysis. A comprehensive pre-clinical validation was carried out. Then, the system was set to acquire the eye surface of patients undergoing proton therapy. Topographies of the eye were compared to manual contouring on MRI. Results: Pre-clinical results demonstrated that 3D topography could achieve sub-millimetric accuracy (median:0.58 mm) and precision (RMSE:0.61 mm) in the clinical setup. The absolute median discrepancy between MRI and FTM-based anterior eye segment surface reconstruction was 0.43 mm (IQR:0.65 mm). Conclusions: The system complied with the requirement of precision and accuracy for image guidance in ocular proton therapy radiation and is expected to be clinically tested soon to evaluate its performance against the current standard.

5.
Phys Med Biol ; 68(19)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37652055

RESUMO

Objective. Investigating the aspects of proton beam delivery to track organ motion with pencil beam scanning therapy. Considering current systems as a reference, specify requirements for next-generation units aiming at real-time image-guided treatments.Approach. Proton treatments for six non-small cell lung cancer (NSCLC) patients were simulated using repeated 4DCTs to model respiratory motion variability. Energy corrections required for this treatment site were evaluated for different approaches to tumour tracking, focusing on the potential for energy adjustment within beamline momentum acceptance (dp/p). A respiration-synchronised tracking, taking into account realistic machine delivery limits, was compared to ideal tracking scenarios, in which unconstrained energy corrections are possible. Rescanning and the use of multiple fields to mitigate residual interplay effects and dose degradation have also been investigated.Main results. Energy correction requirements increased with motion amplitudes, for all patients and tracking scenarios. Higher dose degradation was found for larger motion amplitudes, rescanning has beneficial effects and helped to improve dosimetry metrics for the investigated limited dp/pof 1.2% (realistic) and 2.4%. The median differences between ideal and respiratory-synchronised tracking show minimal discrepancies, 1% and 5% respectively for dose coverage (CTV V95) and homogeneity (D5-D95). Multiple-field planning improves D5-D95 up to 50% in the most extreme cases while it does not show a significant effect on V95.Significance. This work shows the potential of implementing tumour tracking in current proton therapy units and outlines design requirements for future developments. Energy regulation within momentum acceptance was investigated to tracking tumour motion with respiratory-synchronisation, achieving results in line with the performance of ideal tracking scenarios. ±5% Δp/p would allow to compensate for all range offsets in our NSCLC patient cohort, including breathing variability. However, the realistic momentum of 1.2% dp/prepresentative of existing medical units limitations, has been shown to preserve plan quality.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Humanos , Neoplasias Pulmonares/radioterapia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Prótons , Taxa Respiratória
6.
Radiother Oncol ; 176: 208-214, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228759

RESUMO

BACKGROUND AND PURPOSE: To investigate the impact of organ motion on hypoxia-guided proton therapy treatments for non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS: Hypoxia PET and 4D imaging data of six NSCLC patients were used to simulate hypoxia-guided proton therapy with different motion mitigation strategies including rescanning, breath-hold, respiratory gating and tumour tracking. Motion-induced dose degradation was estimated for treatment plans with dose painting of hypoxic tumour sub-volumes at escalated dose levels. Tumour control probability (TCP) and dosimetry indices were assessed to weigh the clinical benefit of dose escalation and motion mitigation. In addition, the difference in normal tissue complication probability (NTCP) between escalated proton and photon VMAT treatments has been assessed. RESULTS: Motion-induced dose degradation was found for target coverage (CTV V95% up to -4%) and quality of the dose-escalation-by-contour (QRMS up to 6%) as a function of motion amplitude and amount of dose escalation. The TCP benefit coming from dose escalation (+4-13%) outweighs the motion-induced losses (<2%). Significant average NTCP reductions of dose-escalated proton plans were found for lungs (-14%), oesophagus (-10%) and heart (-16%) compared to conventional VMAT plans. The best plan dosimetry was obtained with breath hold and respiratory gating with rescanning. CONCLUSION: NSCLC affected by hypoxia appears to be a prime target for proton therapy which, by dose-escalation, allows to mitigate hypoxia-induced radio-resistance despite the sensitivity to organ motion. Furthermore, substantial reduction in normal tissue toxicity can be expected compared to conventional VMAT. Accessibility and standardization of hypoxia imaging and clinical trials are necessary to confirm these findings in a clinical setting.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Hipóxia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Movimentos dos Órgãos , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
8.
Radiother Oncol ; 174: 16-22, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35788353

RESUMO

INTRODUCTION: Ocular biometry in Ocular Proton Therapy (OPT) currently relies on a generic geometrical eye model built by referencing surgically implanted markers. An alternative approach based on image fusion of volumetric Magnetic Resonance Imaging (MRI) and panoramic fundus photography was investigated. MATERIALS AND METHODS: Eighteen non-consecutive uveal melanoma (UM) patients, who consented for an MRI and had their tumour base visible on panoramic fundus photography, were included in this comparative analysis. Through generating digitally-reconstructed projections from MRI images using the Lambert azimuthal equal-area projection, 2D-3D image fusion between fundus photography and an eye model delineated on MRI scans was achieved and allowed for a novel definition of the target base (MRI + FCTV). MRI + FCTV was compared with MRI-only delineation (MRIGTV) and the conventional (EyePlan) target definition (EPCTV). RESULTS: The combined use of fundus photography and MRI to define tumour volumes reduced the average discrepancies by almost 65% with respect to the MRI only tumour definitions when comparing with the conventionally planned EPCTV. With the proposed method, shallow sub-retinal tumour infiltration, otherwise invisible on MRI, can be included in the target volume definition. Moreover, a novel definition of the fovea location improves the accuracy and personalisation of the 3D eye model. CONCLUSION: MRI and fundus image fusion overcomes some of the limitations of ophthalmological MRI for tumour volume definition in OPT. This novel eye tumour modelling method might improve treatment planning personalisation, allowing to better anticipate which patients could benefit from prophylactic treatment protocols for radiation induced maculopathy.


Assuntos
Terapia com Prótons , Neoplasias Uveais , Biometria , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Uveais/diagnóstico por imagem , Neoplasias Uveais/radioterapia
9.
Int J Radiat Oncol Biol Phys ; 113(2): 448-455, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124132

RESUMO

PURPOSE: To develop a normal tissue complication probability model including clinical and dosimetric parameters for high-grade temporal lobe radionecroses (TRN) after pencil beam scanning proton therapy. METHODS AND MATERIALS: We included data on 299 patients with skull base and head and neck tumors treated with pencil-beam scan proton therapy, with a total dose of ≥60 GyRBE (relative biological effectiveness) from May 2004 to November 2018. We considered 9 clinical and 27 dosimetric parameters for the structure-wise modeling of high-grade (grade ≥2) TRN. After eliminating strongly cross-correlated variables, we generated logistic regression models using least absolute shrinkage and selection operator regression. We performed bootstrapping to assess parameter selection robustness and evaluated model performance via cross-correlation by assessing the area under the curve of receiver operating characteristic curves and calibration with a Hosmer-Lemeshow test statistic. RESULTS: After a median radiologic follow-up of 51.5 months (range, 4-190), 27 patients (9%) developed grade ≥2 TRN. Eleven patients had bitemporal necrosis, resulting in 38 events in 598 temporal lobes for structure-wise analysis. During our bootstrapping analysis, we found that the highest selection frequency was for prescription dose, followed by age, V40Gy (%), hypertension, and dose to at least 1 cc (D1cc) (Gy) in the temporal lobe. During our cross-validation, we found that age*prescription-dose*D1cc (Gy)*hypertension was superior in all described test statistics. We built full cohort structure-wise and patient-wise models with maximum area under the curve of receiver operating characteristic curves of 0.79 (structure-wise) and 0.76 (patient-wise). CONCLUSIONS: While developing a logistic regression normal tissue complication probability model to predict grade ≥2 TRN, the best fit was found for the model containing age, prescription dose, D1cc (Gy), and hypertensive blood pressure as risk factors. External validation will be the next step to improve generalizability and potential introduction into clinical routine.


Assuntos
Neoplasias de Cabeça e Pescoço , Hipertensão , Terapia com Prótons , Lesões por Radiação , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Hipertensão/complicações , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Lesões por Radiação/patologia , Dosagem Radioterapêutica , Fatores de Risco , Base do Crânio
10.
Med Phys ; 49(3): 1417-1431, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35041207

RESUMO

PURPOSE: Energy changes in pencil beam scanning proton therapy can be a limiting factor in delivery time, hence, limiting patient throughput and the effectiveness of motion mitigation techniques requiring fast irradiation. In this study, we investigate the feasibility of performing fast and continuous energy modulation within the momentum acceptance of a clinical beamline for proton therapy. METHODS: The alternative use of a local beam degrader at the gantry coupling point has been compared with a more common upstream regulation. Focusing on clinically relevant parameters, a complete beam properties characterization has been carried out. In particular, the acquired empirical data allowed to model and parametrize the errors in range and beam current to deliver clinical treatment plans. RESULTS: For both options, the local and upstream degrader, depth-dose curves measured in water for off-momentum beams were only marginally distorted (γ(1%, 1 mm) > 90%) and the errors in the spot position were within the clinical tolerance, even though increasing at the boundaries of the investigated scan range. The impact on the beam size was limited for the upstream degrader, while dedicated strategies could be required to tackle the beam broadening through the local degrader. Range correction models were investigated for the upstream regulation. The impaired beam transport required a dedicated strategy for fine range control and compensation of beam intensity losses. Our current parameterization based on empirical data allowed energy modulation within acceptance with range errors (median 0.05 mm) and transmission (median -14%) compatible with clinical operation and remarkably low average 27 ms dead time for small energy changes. The technique, tested for the delivery of a skull glioma treatment, resulted in high gamma pass rates at 1%, 1 mm compared to conventional deliveries in experimental measurements with about 45% reduction of the energy switching time when regulation could be performed within acceptance. CONCLUSIONS: Fast energy modulation within beamline acceptance has potential for clinical applications and, when realized with an upstream degrader, does not require modification in the beamline hardware, therefore, being potentially applicable in any running facility. Centers with slow energy switching time can particularly profit from such a technique for reducing dead time during treatment delivery.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Síncrotrons , Água
11.
Z Med Phys ; 32(1): 52-62, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32830006

RESUMO

We present the commissioning and quality assurance of our clinical protocol for respiratory gating in pencil beam scanning proton therapy for cancer patients with moving targets. In a novel approach, optical tracking has been integrated in the therapy workflow and used to monitor respiratory motion from multiple surrogates, applied on the patients' chest. The gating system was tested under a variety of experimental conditions, specific to proton therapy, to evaluate reaction time and reproducibility of dose delivery control. The system proved to be precise in the application of beam gating and allowed the mitigation of dose distortions even for large (1.4cm) motion amplitudes, provided that adequate treatment windows were selected. The total delivered dose was not affected by the use of gating, with measured integral error within 0.15cGy. Analysing high-resolution images of proton transmission, we observed negligible discrepancies in the geometric location of the dose as a function of the treatment window, with gamma pass rate greater than 95% (2%/2mm) compared to stationary conditions. Similarly, pass rate for the latter metric at the 3%/3mm level was observed above 97% for clinical treatment fields, limiting residual movement to 3mm at end-exhale. These results were confirmed in realistic clinical conditions using an anthropomorphic breathing phantom, reporting a similarly high 3%/3mm pass rate, above 98% and 94%, for regular and irregular breathing, respectively. Finally, early results from periodic QA tests of the optical tracker have shown a reliable system, with small variance observed in static and dynamic measurements.


Assuntos
Terapia com Prótons , Humanos , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Respiração
12.
Cancers (Basel) ; 13(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34771490

RESUMO

Radiation-induced optic neuropathy (RION) is a rare side effect following radiation therapy involving the optic structures whose onset is, due to the low amount of available data, challenging to predict. We have analyzed a multi-institutional cohort including 289 skull-base cancer patients treated with proton therapy who all received >45 GyRBE to the optic apparatus. An overall incidence rate of 4.2% (12) was observed, with chordoma patients being at higher risk (5.8%) than chondrosarcoma patients (3.2%). Older age and arterial hypertension, tumor involvement, and repeated surgeries (>3) were found to be associated with RION. Based on bootstrapping and cross-validation, a NTCP model based on age and hypertension was determined to be the most robust, showing good classification ability (AUC-ROC 0.77) and calibration on our dataset. We suggest the application of this model with a threshold of 6% to segment patients into low and high-risk groups before treatment planning. However, further data and external validation are warranted before clinical application.

13.
Radiat Oncol ; 16(1): 199, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635135

RESUMO

BACKGROUND: Hypoxia is known to be prevalent in solid tumors such as non-small cell lung cancer (NSCLC) and reportedly correlates with poor prognostic clinical outcome. PET imaging can provide in-vivo hypoxia measurements to support targeted radiotherapy treatment planning. We explore the potential of proton therapy in performing patient-specific dose escalation and compare it with photon volumetric modulated arc therapy (VMAT). METHODS: Dose escalation has been calibrated to the patient specific tumor response of ten stage IIb-IIIb NSCLC patients by combining HX4-PET imaging and radiobiological modelling of oxygen enhancement ratio (OER) to target variable tumor hypoxia. In a dose-escalation-by-contour approach, escalated dose levels were simulated to the most hypoxic region of the primary target and its effectiveness in improving loco-regional tumor control was assessed. Furthermore, the impact on normal tissue of proton treatments including dose escalation was evaluated in comparison to the normal tissue complication probability (NTCP) of conventional VMAT plans. RESULTS: Ignoring regions of tumor hypoxia can cause overestimation of TCP values by up to 10%, which can effectively be recovered on average to within 0.9% of the nominal TCP, using patient-specific dose escalations of up to 22% of the prescribed dose to PET defined hypoxic regions. Despite such dose escalations, the use of protons could also simultaneously reduce mean doses to the heart (- 14.3 GyRBE), lung (- 8.3 GyRBE), esophagus (- 6.9 GyRBE) and spinal cord (- 3.8 Gy) compared to non-escalated VMAT plans. These reductions are predicted to lead to clinically relevant decreases in NTCP for radiation-induced pneumonitis (- 11.3%), high grade heart toxicity (- 7.4%) and esophagitis (- 7.5%). CONCLUSIONS: This study suggests that the administration of proton therapy for dose escalation to patient specific regions of tumor hypoxia in the treatment of NSCLC can mitigate TCP reduction due to hypoxia-induced radio resistance, while simultaneously reducing NTCP levels even when compared to non-escalated treatments delivered with state-of-the-art photon techniques.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Hipóxia Tumoral/efeitos da radiação , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Transferência Linear de Energia , Masculino , Pessoa de Meia-Idade , Órgãos em Risco , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica
14.
Radiat Oncol ; 16(1): 87, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980248

RESUMO

The Polaris product line from Northern Digital Inc. is well known for accurate optical tracking measurements in research and medical environments. The Spectra position sensor, to date often found in image guided radiotherapy suites, has however reached its end-of-life, being replaced by the new Vega model. The performance in static and dynamic measurements of this new device has been assessed in controlled laboratory conditions, against the strict requirements for system integration in radiation therapy. The system accuracy has improved with respect to the Spectra in both static (0.045 mm RMSE) and dynamic (0.09 mm IQR, < 20 cm/s) tracking and brings marginal improvement in the measurement latency (14.2 ± 1.8 ms). The system performance was further confirmed under clinical settings with the report of early results from periodic QA tests within specifications. Based on our tests, the Polaris Vega meets the quality standards of radiotherapy applications and can be safely used for monitoring respiratory breathing motion or verifying patient positioning.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento , Neoplasias/radioterapia , Radioterapia Guiada por Imagem/instrumentação , Respiração , Humanos , Neoplasias/patologia
15.
Int J Radiat Oncol Biol Phys ; 110(2): 587-595, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421557

RESUMO

PURPOSE: Radiation-induced optic neuropathy (RION) is a rare, yet severe complication following radiation therapy for brain, head and neck, or skull-base tumors. Although several risk factors, such as age, metabolic syndrome, and delivered dose, have been identified, we aimed at expanding the understanding of the mechanisms of interplay regarding dosimetry and patient variables leading to the onset of RION with a focus on proton therapy. METHODS AND MATERIALS: In this retrospective study, we have investigated proton-specific risk factors by comparing common phenomenological normal tissue complication probability models with a multivariate analysis that includes clinical features on a cohort of patients with skull-base and head and neck cancer treated with pencil beam scanning. RESULTS: Although predictive power of the Lyman-Kutcher-Burman and Poisson models was limited for this data set, the addition of clinical variables such as age, tumor involvement, hypertension, or sex remarkably increased model performance. CONCLUSIONS: Based on our assessment, the maximum dose in the optical apparatus is confirmed the most intuitive risk factor. However, above a certain dose threshold, clinical patient characteristics are the deciding factors for the onset of RION. We observed a tendency toward a volume effect that, if confirmed, would imply a benefit for high precision radiation therapy techniques such as proton therapy for the treatment of patients with high clinical risk for RION.


Assuntos
Doenças do Nervo Óptico/etiologia , Nervo Óptico/efeitos da radiação , Terapia com Prótons/efeitos adversos , Adulto , Fatores Etários , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Hipertensão/complicações , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Análise Multivariada , Órgãos em Risco/efeitos da radiação , Distribuição de Poisson , Lesões por Radiação/complicações , Radiometria , Dosagem Radioterapêutica , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais , Neoplasias da Base do Crânio/radioterapia , Adulto Jovem
16.
Radiother Oncol ; 154: 53-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890606

RESUMO

INTRODUCTION: Ocular proton therapy (OPT) for the treatment of uveal melanoma has a long and remarkably successful history. This is despite that, for the majority of patients treated, the definition of the eye anatomy is based on a simplified geometrical model embedded in the treatment planning system EyePlan. In this study, differences in anatomical and tumor structures from EyePlan, and those based on 1.5T magnetic resonance imaging (MRI) are assessed. MATERIALS AND METHODS: Thirty-three uveal melanoma patients treated with OPT at our institution were subject to eye MRI. The target volumes were manually delineated on those images by two radiation oncologists. The resulting volumes were geometrically compared to the clinical standard. In addition, the dosimetric impact of using different models for treatment planning were evaluated. RESULTS: Two patients (6%) presented lesions too small to be visible on MRI. Target volumes identified on MRI scans were on average smaller than EyePlan with discrepancies arising mostly from the definition of the tumor base. Clip-to-tumor base distances measured on MRI models exhibited higher discrepancy to ophthalmological measurements than EyePlan. For 53% of cases, treatment plans optimized for lesions identified on MRI only, failed to achieve sufficient target coverage for EyePlan volumes. DISCUSSION: The analysis has shown that 1.5T MRI might be more susceptible to misses of flat tumor extension of the clinical target volume than the current clinical standard. Thus, a proper integration of ancillary imaging modalities, leading to a better characterization of the full lesion, is required.


Assuntos
Melanoma , Terapia com Prótons , Neoplasias Uveais , Humanos , Imageamento por Ressonância Magnética , Melanoma/diagnóstico por imagem , Melanoma/radioterapia , Planejamento da Radioterapia Assistida por Computador , Neoplasias Uveais/diagnóstico por imagem , Neoplasias Uveais/radioterapia
17.
Sci Rep ; 10(1): 15325, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948790

RESUMO

Tumour tracking is an advanced radiotherapy technique for precise treatment of tumours subject to organ motion. In this work, we addressed crucial aspects of dose delivery for its realisation in pencil beam scanning proton therapy, exploring the momentum acceptance and global achromaticity of a Gantry beamline to perform continuous energy regulation with a standard upstream degrader. This novel approach is validated on simulation data from three geometric phantoms of increasing complexity and one liver cancer patient using 4D dose calculations. Results from a standard high-to-low beamline ramping scheme were compared to alternative energy meandering schemes including combinations with rescanning. Target coverage and dose conformity were generally well recovered with tumour tracking even though for particularly small targets, large variations are reported for the different approaches. Meandering in energy while rescanning has a positive impact on target homogeneity and similarly, hot spots outside the targets are mitigated with a relatively fast convergence rate for most tracking scenarios, halving the volume of hot spots after as little as 3 rescans. This work investigates the yet unexplored potential of having a large momentum acceptance in medical beam line, and provides an alternative to take tumour tracking with particle therapy closer to clinical translation.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Neoplasias Hepáticas/radioterapia , Imagens de Fantasmas , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica
18.
Med Phys ; 47(5): 2237-2241, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32037578

RESUMO

PURPOSE: Ocular proton therapy is an effective therapeutic option for patients affected with uveal melanomas. An optical eye-tracking system (ETS) aiming at noninvasive motion monitoring was developed and tested in a clinical scenario. MATERIALS AND METHODS: The ETS estimates eye position and orientation at 25 frames per second using the three-dimensional position of pupil and cornea curvature centers identified, in the treatment room, through stereoscopic optical imaging and infrared eye illumination. Its capabilities for automatic detection of eye motion were retrospectively evaluated on 60 treatment fractions. Then, the ETS performance was benchmarked against the clinical standard based on visual control and manual beam interruption. RESULTS: Eye-tracking system detected eye position successfully in 97% of all available frames. Eye-tracking system-based eye monitoring during therapy guarantees quicker response to involuntary eye motions than manual beam interruptions and avoids unnecessary beam interruptions. CONCLUSIONS: Eye-tracking system shows promise for on-line monitoring of eye motion. Its introduction in the clinical workflow will guarantee a swifter treatment course for the patient and the clinical personnel.


Assuntos
Tecnologia de Rastreamento Ocular , Melanoma/radioterapia , Movimento , Terapia com Prótons , Neoplasias Uveais/radioterapia , Automação , Benchmarking , Humanos , Melanoma/fisiopatologia , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias Uveais/fisiopatologia
19.
Phys Med Biol ; 65(7): 07NT02, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045898

RESUMO

In this study, a functioning and ventilated anthropomorphic phantom was further enhanced for the purpose of CT and MR imaging of the lung and liver. A deformable lung, including respiratory tract was 3D printed. Within the lung's inner structures is a solid region shaped from a patient's lung tumour and six nitro-glycerine capsules as reference landmarks. The full internal mesh was coated, and the tumour filled, with polyorganosiloxane based gel. A moulded liver was created with an external casing of silicon filled with polyorganosiloxane gel and flexible plastic internal structures. The liver, fitted to the inferior portion of the right lung, moves along with the lung's ventilation. In the contralateral side, a cavity is designed to host a dosimeter, whose motion is correlated to the lung pressure. A 4DCT of the phantom was performed along with static and 4D T1 weighted MR images. The CT Hounsfield units (HU) for the flexible 3D printed material were -600-100 HU (lung and liver structures), for the polyorganosiloxane gel 30-120 HU (lung coating and liver filling) and for the silicon 650-800 HU (liver casing). The MR image intensity units were 0-40, 210-280 and 80-130, respectively. The maximum range of motion in the 4D imaging for the superior lung was 1-3.5 mm and 3.5-8 mm in the inferior portion. The liver motion was 5.5-8.0 mm at the tip and 5.7-10.0 mm at the dome. No measurable drift in motion was observed over a 2 h session and motion was reproducible over three different sessions for sin2(t), sin4(t) and a patient-like breathing curve with the interquartile range of amplitudes for all breathing cycles within 0.5 mm. The addition of features within the lung and of a deformable liver will allow the phantom to be used for imaging studies such as validation of 4DMRI and pseudo CT methods.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Fígado/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Antropometria , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Movimento , Impressão Tridimensional/instrumentação , Respiração
20.
Radiother Oncol ; 134: 135-142, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31005207

RESUMO

BACKGROUND AND PURPOSE: Motion management in the treatment of lung cancer is necessary to assure highest quality of the delivered radiation therapy. In this study, the breath-hold technique is experimentally investigated for pencil beam scanned (PBS) proton therapy, with respect to the dosimetric effect of residual breath-hold motion. MATERIAL AND METHODS: Three-dimensional (3D)-printed tumours extracted from CT scans of three patients were inserted into a dynamic anthropomorphic breathing phantom. The target was set up to move with the individual patient's tumour motion during breath-hold as previously assessed on fluoroscopy. Target dose was measured with radio-chromic film, and both single field uniform dose (SFUD) and intensity-modulated proton therapy (IMPT) plans were delivered. Experiments were repeated for each patient without any motion, to compute the relative dose deviation between static and breath-hold cases. RESULTS: SFUD plans showed small dose deviations between static and breath-hold cases, as evidenced by the gamma pass rate (3%, 3 mm) of 85% or higher. Dose deviation was more evident for IMPT plans, with gamma pass rate reduced to 50-70%. CONCLUSIONS: The breath-hold technique is robust to residual intra-breath-hold motion for SFUD treatment plans, based on our experimental study. IMPT was less robust with larger detected dose deviations.


Assuntos
Suspensão da Respiração , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...