Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mon Not R Astron Soc ; 480(1): 652-668, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30581239

RESUMO

The oldest stars in the Milky Way (MW) bear imprints of the Galaxy's early assembly history. We use FIRE cosmological zoom-in simulations of three MW-mass disc galaxies to study the spatial distribution, chemistry, and kinematics of the oldest surviving stars (z form ≳ 5) in MW-like galaxies. We predict the oldest stars to be less centrally concentrated at z = 0 than stars formed at later times as a result of two processes. First, the majority of the oldest stars are not formed in situ but are accreted during hierarchical assembly. These ex situ stars are deposited on dispersion-supported, halo-like orbits but dominate over old stars formed in situ in the solar neighbourhood, and in some simulations, even in the galactic centre. Secondly, old stars formed in situ are driven outwards by bursty star formation and energetic feedback processes that create a time-varying gravitational potential at z ≳ 2, similar to the process that creates dark matter cores and expands stellar orbits in bursty dwarf galaxies. The total fraction of stars that are ancient is more than an order of magnitude higher for sight lines away from the bulge and inner halo than for inward-looking sight lines. Although the task of identifying specific stars as ancient remains challenging, we anticipate that million-star spectral surveys and photometric surveys targeting metal-poor stars already include hundreds of stars formed before z = 5. We predict most of these targets to have higher metallicity (-3 < [Fe/H] < -2) than the most extreme metal-poor stars.

2.
Mon Not R Astron Soc ; 480(2): 1666-1675, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30581240

RESUMO

Using high-resolution simulations from the FIRE-2 (Feedback In Realistic Environments) project, we study the effects of discreteness in stellar feedback processes on the evolution of galaxies and the properties of the interstellar medium (ISM). We specifically consider the discretization of supernovae (SNe), including hypernovae (HNe), and sampling the initial mass function (IMF). We study these processes in cosmological simulations of dwarf galaxies with z = 0 stellar masses M * ~ 104-3 × 106 M⊙ (halo masses ~109-1010 M⊙). We show that the discrete nature of individual SNe (as opposed to a model in which their energy/momentum deposition is continuous overtime, similar to stellar winds) is crucial in generating a reasonable ISM structure and galactic winds and in regulating dwarf stellar masses. However, once SNe are discretized, accounting for the effects of IMF sampling on continuous mechanisms such as radiative feedback and stellar mass-loss (as opposed to adopting IMF-averaged rates) has weak effects on galaxy-scale properties. We also consider the effects of rare HNe events with energies ~1053 erg. The effects of HNe are similar to the effects of clustered explosions of SNe - which are already captured in our default simulation setup - and do not quench star formation (provided that the HNe do not dominate the total SNe energy budget), which suggests that HNe yield products should be observable in ultra-faint dwarfs today.

3.
Mon Not R Astron Soc ; 481(3): 4133-4157, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30598560

RESUMO

We use hydrodynamic cosmological zoom-in simulations from the Feedback in Realistic Environments project to explore the morphologies and kinematics of 15 Milky Way (MW)-mass galaxies. Our sample ranges from compact, bulge-dominated systems with 90 per cent of their stellar mass within 2.5 kpc to well-ordered discs that reach ≳15 kpc. The gas in our galaxies always forms a thin, rotation-supported disc at z = 0, with sizes primarily determined by the gas mass. For stars, we quantify kinematics and morphology both via the fraction of stars on disc-like orbits and with the radial extent of the stellar disc. In this mass range, stellar morphology and kinematics are poorly correlated with the properties of the halo available from dark matter-only simulations (halo merger history, spin, or formation time). They more strongly correlate with the gaseous histories of the galaxies: those that maintain a high gas mass in the disc after z ~ 1 develop well-ordered stellar discs. The best predictor of morphology we identify is the spin of the gas in the halo at the time the galaxy formed 1/2 of its stars (i.e. the gas that builds the galaxy). High-z mergers, before a hot halo emerges, produce some of the most massive bulges in the sample (from compact discs in gas-rich mergers), while later-forming bulges typically originate from internal processes, as satellites are stripped of gas before the galaxies merge. Moreover, most stars in z = 0 MW-mass galaxies (even z = 0 bulge stars) form in a disc: ≳60-90 per cent of stars begin their lives rotationally supported.

4.
Mon Not R Astron Soc ; 477(2): 1536-1548, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30713356

RESUMO

The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ~2000 low-redshift, HI-detected galaxies with Mstar = 107-11 M☉ and compare to the simulated galaxies. At Mstar ≳ 1010 M☉, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar 108-10 M, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.

5.
Mon Not R Astron Soc ; 472(4): 4786-4796, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-30705467

RESUMO

We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly used mass estimators from Walker et al. (2009) and Wolf et al. (2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, Re . The simulations are part of the Feedback in Realistic Environments (fire) project and include 12 systems with stellar masses spanning 105­107M⊙ that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: MWolf∕Mtrue=0.98−0.12+0.19 and MWalker∕Mtrue=1.07−0.15+0.21, with errors reflecting the 68 per cent range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios c/a ≃ 0.4­0.7. The median accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off ∝r−42 at large r; they are well fit by Sérsic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is Re . Determining Re by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.

6.
Mon Not R Astron Soc ; 472(3): 2945-2954, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30595610

RESUMO

We compare a suite of four simulated dwarf galaxies formed in 1010 M☉ haloes of collisionless cold dark matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for DM self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (fire) project and utilize the fire-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in self-interacting dark matter (SIDM) with σ/m = 1 cm2 g-1 are very similar to those in CDM (spanning M ★ ≈ 105.7-7.0 M☉) and all runs lie on a similar stellar mass-size relation. The logarithmic DM density slope (α = d log ρ/d log r) in the central 250-500 pc remains steeper than α = -0.8 for the CDM-Hydro simulations with stellar mass M ★ ~ 106.6 M☉ and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α > -0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include fire-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting that SIDM will be easier to falsify than CDM using low-mass galaxies. Our fire simulations predict that galaxies less massive than M ★ ≲ 3 × 106 M☉ provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.

8.
Nature ; 529(7587): 502-4, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26819043

RESUMO

Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

9.
Nature ; 525(7570): 496-9, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26399829

RESUMO

Submillimetre-bright galaxies at high redshift are the most luminous, heavily star-forming galaxies in the Universe and are characterized by prodigious emission in the far-infrared, with a flux of at least five millijanskys at a wavelength of 850 micrometres. They reside in haloes with masses about 10(13) times that of the Sun, have low gas fractions compared to main-sequence disks at a comparable redshift, trace complex environments and are not easily observable at optical wavelengths. Their physical origin remains unclear. Simulations have been able to form galaxies with the requisite luminosities, but have otherwise been unable to simultaneously match the stellar masses, star formation rates, gas fractions and environments. Here we report a cosmological hydrodynamic galaxy formation simulation that is able to form a submillimetre galaxy that simultaneously satisfies the broad range of observed physical constraints. We find that groups of galaxies residing in massive dark matter haloes have increasing rates of star formation that peak at collective rates of about 500-1,000 solar masses per year at redshifts of two to three, by which time the interstellar medium is sufficiently enriched with metals that the region may be observed as a submillimetre-selected system. The intense star formation rates are fuelled in part by the infall of a reservoir gas supply enabled by stellar feedback at earlier times, not through major mergers. With a lifetime of nearly a billion years, our simulations show that the submillimetre-bright phase of high-redshift galaxies is prolonged and associated with significant mass buildup in early-Universe proto-clusters, and that many submillimetre-bright galaxies are composed of numerous unresolved components (for which there is some observational evidence).

10.
Science ; 320(5881): 1309-12, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18483399

RESUMO

Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.

11.
Science ; 319(5859): 52-5, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-18174431

RESUMO

The universe is permeated by a network of filaments, sheets, and knots collectively forming a "cosmic web." The discovery of the cosmic web, especially through its signature of absorption of light from distant sources by neutral hydrogen in the intervening intergalactic medium, exemplifies the interplay between theory and experiment that drives science and is one of the great examples in which numerical simulations have played a key and decisive role. We recount the milestones in our understanding of cosmic structure; summarize its impact on astronomy, cosmology, and physics; and look ahead by outlining the challenges faced as we prepare to probe the cosmic web at new wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...