Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29993542

RESUMO

Echocardiography is widely used to provide critical left ventricular indices describing myocardial motion and blood inflow velocity. Tissue motion and blood flow are strongly connected and interdependent in the ventricle. During cardiac relaxation, rapid filling leads to the formation of a vortical blood flow pattern. In this paper, we introduce a high-frame-rate method to track vortex dynamics alongside myocardium motion, in a single heartbeat. Cardiac triplex imaging (B-mode + tissue Doppler + color Doppler) was obtained by insonating the left ventricle with diverging waves. We used coherent compounding with integrated motion compensation to obtain high-quality B-mode images. Tissue Doppler was retrieved and the septal and lateral velocities of the mitral annulus were deduced. A rate of ~80 triplex images/s was obtained. Vortex dynamics was analyzed by Doppler vortography. Blood vortex signature maps were used to track the vortex and compute core vorticities. The sequence was implemented in a Verasonics scanner with a 2.5-MHz phased array and tested in vivo in 12 healthy volunteers. Two main peaks appeared on the vorticity curves. These peaks were synchronized with the mitral inflow velocities with a small delay. We observed a relationship between the tissue and vortex waveforms, though also with a delay, which denoted the lag between the wall and the flow motion. Clinical diastolic indices combining basal and mitral inflow velocities (E/A ratio and E/ e' ratio) were determined and compared with those measured using a conventional ultrasound scanner; a good correlation was obtained ( r2 = 0.96 ). High-frame-rate Doppler echocardiography enabled us to retrieve time-resolved dynamics of the myocardium and vortex flow within the same cardiac cycle. Coupling wall-flow analysis could be of clinical relevance for early diagnosis of filling impairment.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Ecocardiografia Doppler/métodos , Coração/diagnóstico por imagem , Coração/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-29994147

RESUMO

RF acquisition with a high-performance multi-chan-nel ultrasound system generates massive datasets in short periods of time, especially in "ultrafast" ultrasound when digital receive beamforming is required. Sampling at a rate four times the carrier frequency is the standard procedure since this rule complies with the Nyquist-Shannon sampling theorem and simplifies quadrature sampling. Bandpass sampling (or undersampling) outputs a band-pass signal at a rate lower than the maximal frequency without harmful aliasing. Advantages over Nyquist sampling are reduced storage volumes and data workflow, and simplified digital signal processing tasks. We used RF undersampling in color flow imag-ing (CFI) and vector flow imaging (VFI) to decrease data volume significantly (factor of 3 to 13 in our configurations). CFI and VFI with Nyquist and sub-Nyquist samplings were compared in vitro and in vivo. The estimate errors due to undersampling were small or marginal, which illustrates that Doppler and vector Doppler im-ages can be correctly computed with a drastically reduced amount of RF samples. Undersampling can be a method of choice in CFI and VFI to avoid information overload and reduce data transfer and storage.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29733276

RESUMO

Conventional echocardiography is the leading modality for noninvasive cardiac imaging. It has been recently illustrated that high-frame-rate echocardiography using diverging waves could improve cardiac assessment. The spatial resolution and contrast associated with this method are commonly improved by coherent compounding of steered beams. However, owing to fast tissue velocities in the myocardium, the summation process of successive diverging waves can lead to destructive interferences if motion compensation (MoCo) is not considered. Coherent compounding methods based on MoCo have demonstrated their potential to provide high-contrast B-mode cardiac images. Ultrafast speckle-tracking echocardiography (STE) based on common speckle-tracking algorithms could substantially benefit from this original approach. In this paper, we applied STE on high-frame-rate B-mode images obtained with a specific MoCo technique to quantify the 2-D motion and tissue velocities of the left ventricle. The method was first validated in vitro and then evaluated in vivo in the four-chamber view of 10 volunteers. High-contrast high-resolution B-mode images were constructed at 500 frames/s. The sequences were generated with a Verasonics scanner and a 2.5-MHz phased array. The 2-D motion was estimated with standard cross correlation combined with three different subpixel adjustment techniques. The estimated in vitro velocity vectors derived from STE were consistent with the expected values, with normalized errors ranging from 4% to 12% in the radial direction and from 10% to 20% in the cross-range direction. Global longitudinal strain of the left ventricle was also obtained from STE in 10 subjects and compared to the results provided by a clinical scanner: group means were not statistically different ( value = 0.33). The in vitro and in vivo results showed that MoCo enables preservation of the myocardial speckles and in turn allows high-frame-rate STE.


Assuntos
Ecocardiografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Humanos , Movimento/fisiologia , Adulto Jovem
4.
Artigo em Inglês | MEDLINE | ID: mdl-29733282

RESUMO

RF acquisition with a high-performance multichannel ultrasound system generates massive data sets in short periods of time, especially in "ultrafast" ultrasound when digital receive beamforming is required. Sampling at a rate four times the carrier frequency is the standard procedure since this rule complies with the Nyquist-Shannon sampling theorem and simplifies quadrature sampling. Bandpass sampling (or undersampling) outputs a bandpass signal at a rate lower than the maximal frequency without harmful aliasing. Advantages over Nyquist sampling are reduced storage volumes and data workflow, and simplified digital signal processing tasks. We used RF undersampling in color flow imaging (CFI) and vector flow imaging (VFI) to decrease data volume significantly (factor of 3 to 13 in our configurations). CFI and VFI with Nyquist and sub-Nyquist samplings were compared in vitro and in vivo. The estimate errors due to undersampling were small or marginal, which illustrates that Doppler and vector Doppler images can be correctly computed with a drastically reduced amount of RF samples. Undersampling can be a method of choice in CFI and VFI to avoid information overload and reduce data transfer and storage.

5.
Artigo em Inglês | MEDLINE | ID: mdl-27913338

RESUMO

Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.


Assuntos
Ecocardiografia Doppler/métodos , Ecocardiografia Quadridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...