Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Top Dev Biol ; 106: 217-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24290351

RESUMO

Type 1 diabetes is a metabolic disease resulting in the selective loss of pancreatic insulin-producing ß-cells and affecting millions of people worldwide. The side effects of diabetes are varied and include cardiovascular, neuropathologic, and kidney diseases. Despite the most recent advances in diabetes care, patients suffering from type 1 diabetes still display a shortened life expectancy compared to their healthy counterparts. In an effort to improve ß-cell-replacement therapies, numerous approaches are currently being pursued, most of these aiming at finding ways to differentiate stem/progenitor cells into ß-like cells by mimicking embryonic development. Unfortunately, these efforts have hitherto not allowed the generation of fully functional ß-cells. This chapter summarizes recent findings, allowing a better insight into the molecular mechanisms underlying the genesis of ß-cells during the course of pancreatic morphogenesis. Furthermore, a focus is made on new research avenues concerning the conversion of pre-existing pancreatic cells into ß-like cells, such approaches holding great promise for the development of type 1 diabetes therapies.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células Secretoras de Insulina/fisiologia , Pâncreas/embriologia , Regeneração , Animais , Desdiferenciação Celular/fisiologia , Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 1/cirurgia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/transplante , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Medicina Regenerativa/métodos
2.
Med Sci (Paris) ; 29(8-9): 749-55, 2013.
Artigo em Francês | MEDLINE | ID: mdl-24005630

RESUMO

Type 1 diabetes (T1DM) is a common metabolic disorder affecting an ever-increasing number of patients worldwide. T1DM is caused by the selective destruction of pancreatic insulin-producing ß-cells by the immune system. Such loss results in chronic hyperglycemia and could induce a number of cardio-vascular complications. Despite the classical insulin-based therapy, compared to healthy people, patients with T1DM display a shortened life expectancy due to the treatment's inability to strictly regulate glycemic levels. An alternative therapy involves pancreatic islet transplantation but the shortage of donors and the required immuno-suppressive treatments limit the widespread use of this approach. Therefore, the search of new approaches to generate functional ß-cells is of growing interest. In this review, we describe several novel strategies aiming at the conversion of diverse pancreatic cells into ß-cells, such as acinar, ductal, and endocrine cells. Clearly, such promising results could open new research avenues in the context of type 1 diabetes research.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/citologia , Pâncreas/citologia , Células Acinares/citologia , Diabetes Mellitus Tipo 1/cirurgia , Humanos , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas , Ductos Pancreáticos/citologia , Regeneração , Doadores de Tecidos/provisão & distribuição
4.
Diabetes Res Clin Pract ; 101(1): 1-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23380136

RESUMO

Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic ß-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing ß-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing ß-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding ß-cell regeneration.


Assuntos
Reprogramação Celular , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Regeneração/fisiologia , Animais , Humanos , Ilhotas Pancreáticas/fisiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...