Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39005454

RESUMO

Understanding how circuits in the brain simultaneously coordinate their activity to mediate complex ethnologically relevant behaviors requires recording neural activities from distributed populations of neurons in freely behaving animals. Current miniaturized imaging microscopes are typically limited to imaging a relatively small field of view, precluding the measurement of neural activities across multiple brain regions. Here we present a miniaturized micro-camera array microscope (mini-MCAM) that consists of four fluorescence imaging micro-cameras, each capable of capturing neural activity across a 4.5 mm x 2.55 mm field of view (FOV). Cumulatively, the mini-MCAM images over 30 mm 2 area of sparsely expressed GCaMP6s neurons distributed throughout the dorsal cortex, in regions including the primary and secondary motor, somatosensory, visual, retrosplenial, and association cortices across both hemispheres. We demonstrate cortex-wide cellular resolution in vivo Calcium (Ca 2+ ) imaging using the mini-MCAM in both head-fixed and freely behaving mice.

2.
Res Sq ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014260

RESUMO

Complex behaviors are mediated by neural computations occurring throughout the brain. In recent years, tremendous progress has been made in developing technologies that can record neural activity at cellular resolution at multiple spatial and temporal scales. However, these technologies are primarily designed for studying the mammalian brain during head fixation - wherein the behavior of the animal is highly constrained. Miniaturized devices for studying neural activity in freely behaving animals are largely confined to recording from small brain regions owing to performance limitations. We present a cranial exoskeleton that assists mice in maneuvering neural recording headstages that are orders of magnitude larger and heavier than the mice, while they navigate physical behavioral environments. Force sensors embedded within the headstage are used to detect the mouse's milli-Newton scale cranial forces which then control the x, y, and yaw motion of the exoskeleton via an admittance controller. We discovered optimal controller tuning parameters that enable mice to locomote at physiologically realistic velocities and accelerations while maintaining natural walking gait. Mice maneuvering headstages weighing up to 1.5 kg can make turns, navigate 2D arenas, and perform a navigational decision-making task with the same performance as when freely behaving. We designed an imaging headstage and an electrophysiology headstage for the cranial exoskeleton to record brain-wide neural activity in mice navigating 2D arenas. The imaging headstage enabled recordings of Ca2+ activity of 1000s of neurons distributed across the dorsal cortex. The electrophysiology headstage supported independent control of up to 4 silicon probes, enabling simultaneous recordings from 100s of neurons across multiple brain regions and multiple days. Cranial exoskeletons provide flexible platforms for largescale neural recording during the exploration of physical spaces, a critical new paradigm for unraveling the brain-wide neural mechanisms that control complex behavior.

3.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333228

RESUMO

Complex behaviors are mediated by neural computations occurring throughout the brain. In recent years, tremendous progress has been made in developing technologies that can record neural activity at cellular resolution at multiple spatial and temporal scales. However, these technologies are primarily designed for studying the mammalian brain during head fixation - wherein the behavior of the animal is highly constrained. Miniaturized devices for studying neural activity in freely behaving animals are largely confined to recording from small brain regions owing to performance limitations. We present a cranial exoskeleton that assists mice in maneuvering neural recording headstages that are orders of magnitude larger and heavier than the mice, while they navigate physical behavioral environments. Force sensors embedded within the headstage are used to detect the mouse's milli-Newton scale cranial forces which then control the x, y, and yaw motion of the exoskeleton via an admittance controller. We discovered optimal controller tuning parameters that enable mice to locomote at physiologically realistic velocities and accelerations while maintaining natural walking gait. Mice maneuvering headstages weighing up to 1.5 kg can make turns, navigate 2D arenas, and perform a navigational decision-making task with the same performance as when freely behaving. We designed an imaging headstage and an electrophysiology headstage for the cranial exoskeleton to record brain-wide neural activity in mice navigating 2D arenas. The imaging headstage enabled recordings of Ca2+ activity of 1000s of neurons distributed across the dorsal cortex. The electrophysiology headstage supported independent control of up to 4 silicon probes, enabling simultaneous recordings from 100s of neurons across multiple brain regions and multiple days. Cranial exoskeletons provide flexible platforms for largescale neural recording during the exploration of physical spaces, a critical new paradigm for unraveling the brain-wide neural mechanisms that control complex behavior.

4.
J Neurosci ; 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35896424

RESUMO

There are five cloned muscarinic acetylcholine receptors (M1-M5). Of these, the muscarinic type 5 receptor (M5) is the only one localized to dopamine neurons in the ventral tegmental area and substantia nigra. Unlike M1-M4, the M5 receptor has relatively restricted expression in the brain, making it an attractive therapeutic target. Here we performed an in-depth characterization of M5-dependent potentiation of dopamine transmission in the nucleus accumbens and accompanying exploratory behaviors in male and female mice. We show that M5 receptors potentiate dopamine transmission by acting directly on the terminals within the nucleus accumbens. Using the muscarinic agonist oxotremorine, we revealed a unique concentration-response curve and a sensitivity to repeated forced swim stress or restraint stress exposure. We found that constitutive deletion of M5 receptors reduced exploration of the center of an open field while at the same time impairing normal habituation only in male mice. In addition, M5 deletion reduced exploration of salient stimuli, especially under conditions of high novelty, yet had no effect on hedonia assayed using the sucrose preference test or on stress coping strategy assayed using the forced swim test. We conclude that M5 receptors are critical for both engaging with the environment and updating behavioral output in response to environment cues, specifically in male mice. A cardinal feature of mood and anxiety disorders is withdrawal from the environment. These data indicate that boosting M5 receptor activity may be a useful therapeutic target for ameliorating these symptoms of depression and anxiety.Significance Statement:The basic physiological and behavioral functions of the muscarinic M5 receptor remain understudied. Furthermore, its presence on dopamine neurons, relatively restricted expression in the brain, and recent crystallization make it an attractive target for therapeutic development. Yet, most preclinical studies of M5 receptor function have primarily focused on substance use disorders in male rodents. Here we characterized the role of M5 receptors in potentiating dopamine transmission in the nucleus accumbens, finding impaired functioning after stress exposure. Furthermore, we show that M5 receptors can modulate exploratory behavior in a sex-specific manner, without impacting hedonic behavior. These findings further illustrate the therapeutic potential of the M5 receptor, warranting further research in the context of treating mood disorders.

5.
Adv Healthc Mater ; 11(18): e2200626, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869830

RESUMO

Electrophysiology and optical imaging provide complementary neural sensing capabilities - electrophysiological recordings have high temporal resolution, while optical imaging allows recording of genetically-defined populations at high spatial resolution. Combining these two modalities for simultaneous large-scale, multimodal sensing of neural activity across multiple brain regions can be very powerful. Here, transparent, inkjet-printed electrode arrays with outstanding optical and electrical properties are seamlessly integrated with morphologically conformant transparent polymer skulls. Implanted on transgenic mice expressing the Calcium (Ca2+ ) indicator GCaMP6f in excitatory neurons, these "eSee-Shells" provide a robust opto-electrophysiological interface for over 100 days. eSee-Shells enable simultaneous mesoscale Ca2+ imaging and electrocorticography (ECoG) acquisition from multiple brain regions covering 45 mm2 of cortex under anesthesia and in awake animals. The clarity and transparency of eSee-Shells allow recording single-cell Ca2+ signals directly below the electrodes and interconnects. Simultaneous multimodal measurement of cortical dynamics reveals changes in both ECoG and Ca2+ signals that depend on the behavioral state.


Assuntos
Cálcio , Polímeros , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Camundongos , Camundongos Transgênicos , Crânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...