Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Cell Biol ; 182: 247-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359981

RESUMO

The correct repair of DNA Double Strand Breaks (DSBs) is fundamental to prevent the loss of genetic information, mutations, and chromosome rearrangements. An emerging determinant of DNA repair is chromatin mobility. However, how chromatin mobility can influence DSBs repair is still poorly understood. While increased mobility is generally associated with the correct repair by Homologous Recombination (HR) of DSBs generated in heterochromatin, it promotes the mis-repair of multiple distal DSBs by Non-Homologous End Joining (NHEJ). Here we describe a method for detecting and quantifying DSBs mobility by live-cell imaging in the context of multiple DSBs prone to mis-repair by NHEJ. In addition, we discuss a set of parameters that can be used for quantitative and qualitative analysis of nuclear deformations and to discard nuclei where the deformation could affect the analysis of DSBs mobility. While this method is based on the visualization of DSBs with the mCherry-53BP1-2 fusion protein, we believe that it can also be used to analyze the mobility of nuclear foci formed by different fluorescent proteins.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Reparo do DNA/genética , Cromatina/genética , Rearranjo Gênico
2.
Hum Mol Genet ; 32(19): 2901-2912, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37440454

RESUMO

Telomere biology disorders (TBDs) are characterized by short telomeres, premature aging, bone marrow failure and cancer predisposition. Germline mutations in NHP2, encoding for one component of the telomerase cofactor H/ACA RNA binding complex together with Dyskerin, NOP10 and GAR1, have been previously reported in rare cases of TBDs. Here, we report two novel NHP2 variants (NHP2-A39T and NHP2-T44M) identified in a compound heterozygous patient affected by premature aging, bone marrow failure/myelodysplastic syndrome and gastric cancer. Although still able to support cell viability, both variants reduce the levels of hTR, the telomerase RNA component, and telomerase activity, expanding the panel of NHP2 pathological variants. Furthermore, both variants fail to be incorporated in the H/ACA RNA binding complex when in competition with wild-type endogenous NHP2, and the lack of incorporation causes their drastic proteasomal degradation. By RoseTTAFold prediction followed by molecular dynamics simulations, we reveal a dramatic distortion of residues 33-41, which normally position on top of the NHP2 core, as the main defect of NHP2-A39T, and high flexibility and the misplacement of the N-terminal region (residues 1-24) in NHP2-T44M and, to a lower degree, in NHP2-A39T. Because deletion of amino acids 2-24 causes a reduction in NHP2 levels only in the presence of wild-type NHP2, while deletion of amino acids 2-38 completely disrupts NHP2 stability, we propose that the two variants are mis-incorporated into the H/ACA binding complex due to the altered dynamics of the first 23 amino acids and/or the distortion of the residues 25-41 loop.


Assuntos
Senilidade Prematura , Telomerase , Humanos , Telomerase/genética , Ribonucleoproteínas Nucleares Pequenas/genética , RNA/genética , RNA/metabolismo , Transtornos da Insuficiência da Medula Óssea , Estabilidade Proteica , Telômero/metabolismo , Proteínas Nucleares/genética
3.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635430

RESUMO

The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors. Here, we characterized the effects of the deubiquitinase (DUB) inhibitor VLX1570 on protein homeostasis, both at the level of the UPR and on protein translation, in acute lymphoblastic leukemia (ALL). Similar to the 20S inhibitor bortezomib, VLX1570 induced accumulation of polyubiquitinated proteins and increased expression of the chaperone Grp78/Bip in ALL cells. Both compounds induced cleavage of PARP (Poly (ADP-ribose) polymerase) in ALL cells, consistent with induction of apoptosis. However, and in contrast to bortezomib, VLX1570 treatment resulted in limited induction of the proapoptotic CHOP protein. Translational inhibition was observed by both bortezomib and VLX1570. We report that in distinction to bortezomib, suppression of translation by VXL1570 occurred at the level of elongation. Increased levels of Hsc70/Hsp70 proteins were observed on polysomes following exposure to VLX1570, possibly suggesting defects in nascent protein folding. Our findings demonstrate apoptosis induction in ALL cells that appears to be uncoupled from CHOP induction, and show that VLX1570 suppresses protein translation by a mechanism distinct from that of bortezomib.


Assuntos
Azepinas/farmacologia , Compostos de Benzilideno/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...