Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(45): 13935-13942, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322953

RESUMO

Electrophoretic separation of a fluorescent dye mixture, containing rhodamine B (RB) and fluorescein, in liquid foams stabilized by anionic, cationic, or non-ionic surfactants in water-glycerol mixtures was studied in a custom-designed foam separation device. The effects of the external electric field applied across the foam and the initial pH of the solution on the effectiveness of separation were also studied. The fluid motion due to electroosmosis and the resulting back pressure within the foam and local pH changes were found to be complex and affected the separation. Fluorescein dye molecules, which have a positive or negative charge depending on the solution pH, aggregated in the vicinity of an electrode, leaving a pure band of neutral dye RB. The effectiveness of the separation was quantified by the percentage width of the pure RB band, which was found to be between 29 and 42%. This study demonstrates the potential of liquid foam as a platform for electrophoretic separation.

2.
Langmuir ; 38(20): 6305-6321, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35546544

RESUMO

Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas-liquid and solid-liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas-liquid and solid-liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...