Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6980, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848717

RESUMO

Electronic correlations play important roles in driving exotic phenomena in condensed matter physics. They determine low-energy properties through high-energy bands well-beyond optics. Great effort has been made to understand low-energy excitations such as low-energy excitons in transition metal dichalcogenides (TMDCs), however their high-energy bands and interlayer correlation remain mysteries. Herewith, by measuring temperature- and polarization-dependent complex dielectric and loss functions of bulk molybdenum disulphide from near-infrared to soft X-ray, supported with theoretical calculations, we discover unconventional soft X-ray correlated-plasmons with low-loss, and electronic transitions that reduce dimensionality and increase correlations, accompanied with significantly modified low-energy excitons. At room temperature, interlayer electronic correlations, together with the intralayer correlations in the c-axis, are surprisingly strong, yielding a three-dimensional-like system. Upon cooling, wide-range spectral-weight transfer occurs across a few tens of eV and in-plane p-d hybridizations become enhanced, revealing strong Coulomb correlations and electronic anisotropy, yielding a two-dimensional-like system. Our result shows the importance of strong electronic, interlayer and intralayer correlations in determining electronic structure and opens up applications of utilizing TMDCs on plasmonic nanolithrography.

2.
Nano Lett ; 21(18): 7448-7456, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498884

RESUMO

A concept of spin plasmon, a collective mode of spin-density, in strongly correlated electron systems has been proposed since the 1930s. It is expected to bridge between spintronics and plasmonics by strongly confining the photon energy in the subwavelength scale within single magnetic-domain to enable further miniaturizing devices. However, spin plasmon in strongly correlated electron systems is yet to be realized. Herein, we present a new spin correlated-plasmon at room temperature in novel Mott-like insulating highly oriented single-crystalline gold quantum-dots (HOSG-QDs). Interestingly, the spin correlated-plasmon is tunable from the infrared to visible, accompanied by spectral weight transfer yielding a large quantum absorption midgap state, disappearance of low-energy Drude response, and transparency. Supported with theoretical calculations, it occurs due to an interplay of surprisingly strong electron-electron correlations, s-p hybridization and quantum confinement in the s band. The first demonstration of the high sensitivity of spin correlated-plasmon in surface-enhanced Raman spectroscopy is also presented.

3.
ACS Appl Mater Interfaces ; 12(3): 4114-4122, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31927903

RESUMO

A controllable electronic manipulation in a frustrated magnetic system such as solution-based two-dimensional (2D) all-inorganic perovskites offers a possible route for their integrations with electronic and magnetic devices for their advanced applications. Here, we perform element-specific investigations of an emergent class of quasi-2D all-inorganic perovskites Cs2CuCl4-xBrx with (0 ≤ x ≤ 4) using a combination of synchrotron-radiation photoelectron techniques. Surface- and element-sensitive X-ray absorption spectroscopy spectra of Cu L2,3 edges indicate strong electronic transition that is largely influenced by their halogen content at room temperature. This implies that site-selective occupation largely dominates the electronic transition across the unoccupied states of these series since chlorine atoms possess a stronger electronegative character than bromine atoms. Moreover, the implication of halogen site is reflected in the valence band of Cl-rich copper perovskite in which the valence band edge is closer to Fermi energy (EF) than that of the Br-rich compound. Furthermore, X-ray magnetic circular dichroism spectra of mixed ratio and Br-rich compounds exhibit antiferromagnetism at room temperature. These site-specific magnetic-spectroscopic results are corroborated by density functional theory calculations. The strong electronic modulation and the local magnetic spectroscopy results in these solution-based and low-temperature-growth materials will pave the way toward energy- and cost-efficient perovskite devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...