Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(42): 24200-24210, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693948

RESUMO

In this work, a series of eight similarly structured perinone chromophores were synthesized and photophysically characterized to elucidate the electronic and structural tunability of their excited state properties, including excited state redox potentials and fluorescence lifetimes/quantum yields. Despite their similar structure, these chromophores exhibited a broad range of visible absorption properties, quantum yields, and excited state lifetimes. In conjunction with static and time-resolved spectroscopies from the ultrafast to nanosecond time regimes, time-dependent computational modeling was used to correlate this behavior to the relationship between non-radiative decay and the energy-gap law. Additionally, the ground and excited state redox potentials were calculated and found to be tunable over a range of 1 V depending on the diamine or anhydride used in their synthesis (Ered* = 0.45-1.55 V; Eox* = -0.88 to -1.67 V), which is difficult to achieve with typical photoredox-active transition metal complexes. These diverse chromophores can be easily prepared, and with their range of photophysical tunability, will be valuable for future use in photofunctional applications.

2.
Dalton Trans ; 49(29): 9995-10002, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643713

RESUMO

The manipulation of the triplet excited state manifold leads to large differences in the photophysical properties within a given class of metal-organic chromophores. By the appropriate choice of ancillary ligand, large changes can be made both to the order and nature of the lowest excited states and therefore to the resulting photophysical properties. Herein, a series of four bis-2-phenylpyridine (ppy) cyclometalated Ir(iii) compounds bearing two arylisocyanide ligands were synthesized and photophysically characterized to understand the effects of using ancillary ligands featuring systematic changes in π-conjugation. By varying the arylisocyanide ligands, the photoluminescence quantum yield ranged from 5% to 49% and the excited state lifetime ranged between 24 µs and 2 ms. These variations in photophysical response are consistent with lowering the triplet ligand-centered (3LC) state of the arylisocyanide ligand as the π system was extended, confirmed by 77 K photoluminescence emission spectra and ultrafast transient absorption experiments. The latter analysis gleaned detailed insight into the importance of the interplay of the 3LC state of the phenylpyridine and arylisocyanide ligands in these polychromophic Ir(iii) molecules.

3.
J Phys Chem Lett ; 11(13): 5092-5099, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32517474

RESUMO

Metal-free chromophores that efficiently generate triplet excited states represent promising alternatives with respect to transition metal-containing photosensitizers, such as those featuring metal-to-ligand charge transfer excited states. However, such molecular constructs have remained underexplored due to the unclear relationship(s) between molecular structure and efficient/rapid intersystem crossing. In this regard, we present a series of three thionated perinone chromophores serving as a newly conceived class of heavy metal-free triplet photosensitizers. We demonstrate that thionation of the lone C═O substituent in each highly fluorescent perinone imparts red-shifted absorbance bands that maintain intense extinction coefficients across the visible spectrum, as well as unusually efficient triplet excited state formation as inferred from the measured singlet O2 quantum yields at 1270 nm (ΦΔ = 0.78-1.0). Electronic structure calculations revealed the emergence of a low energy S1 (n → π*) excited state in the proximity of a slightly higher energy S2 (π → π*) excited state. The distinct character in each of the two lowest-lying singlet state manifolds resulted in the energetic inversion of the corresponding triplet excited states due to differences in electron exchange interactions. Rapid S1 → T1 intersystem crossing was thereby facilitated in this manner through spin-orbit coupling as predicted by the El Sayed rules. The lifetimes of the resultant triplet excited states persisted into the microsecond time regime, as measured by transient absorbance spectroscopy, enabling effective bimolecular triplet sensitization of some common polycyclic aromatic hydrocarbons. The synthetically facile interchange of a single O atom to an S atom in the investigated perinones resulted in marked changes to their photophysical properties, namely, conversion of dominant singlet state fluorescence in the former to long-lived triplet excited states in the latter. The combined results suggest a general strategy for accessing long-lived triplet excited states in organic chromophores featuring a lone C═O moiety residing within its structure, valuable for the design of metal-free triplet photosensitizers.

4.
Nat Chem ; 12(4): 345-352, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203439

RESUMO

Advances in chemical control of the photophysical properties of transition-metal complexes are revolutionizing a wide range of technologies, particularly photocatalysis and light-emitting diodes, but they rely heavily on molecules containing precious metals such as ruthenium and iridium. Although the application of earth-abundant 'early' transition metals in photosensitizers is clearly advantageous, a detailed understanding of excited states with ligand-to-metal charge transfer (LMCT) character is paramount to account for their distinct electron configurations. Here we report an air- and moisture-stable, visible light-absorbing Zr(IV) photosensitizer, Zr(MesPDPPh)2, where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. This molecule has an exceptionally long-lived triplet LMCT excited state (τ = 350 µs), featuring highly efficient photoluminescence emission (Ф = 0.45) due to thermally activated delayed fluorescence emanating from the higher-lying singlet configuration with significant LMCT contributions. Zr(MesPDPPh)2 engages in numerous photoredox catalytic processes and triplet energy transfer. Our investigation provides a blueprint for future photosensitizer development featuring early transition metals and excited states with significant LMCT contributions.

5.
Inorg Chem ; 58(13): 8750-8762, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247860

RESUMO

We present a series of four transition-metal complexes based on the rhenium(I) tricarbonyl 1,10-phenanthroline (phen) template, with a lone ancillary arylisocyanide (CNAr) ligand to yield metal-organic chromophores of the generic molecular formula [Re(phen)(CO)3(CNAr)]+ [CNAr = 2,6-diisopropylphenyl isocyanide (1), 4-phenyl-2,6-diisopropylphenyl isocyanide (2), 4-phenylethynyl-2,6-diisopropylphenyl isocyanide (3), and 4-biphenyl-2,6-diisopropylphenyl isocyanide (4)]. This particular series features varied degrees of π-conjugation length in the CNAr moiety, resulting in significant modulation in the resultant photophysical properties. All molecules possess long-lived [8-700 µs at room temperature (RT)], strongly blue-green photoluminescent and highly energetic excited states (λmax,em = 500-518 nm; Φ = 14-64%). Each of these chromophores has been photophysically investigated using static and dynamic spectroscopic techniques, the latter probed from ultrafast to supra-nanosecond time scales using transient absorption and photoluminescence (PL). Time-resolved PL intensity decays recorded as a function of the temperature were consistent with the presence of at least two emissive states lying closely spaced in energy with a third nonemissive state lying much higher in energy and likely ligand-field in character. The combined experimental evidence, along with the aid of electronic structure calculations (density functional theory and time-dependent density functional theory performed at the M06/Def2-SVP/SDD level), illustrates that the CNAr ligand is actively engaged in manipulating the excited-state decay in three of these molecules (2-4), wherein the triplet metal-to-ligand charge-transfer (3MLCT) state along with two distinct triplet ligand-centered (3LC) excited-state configurations (phen and CNAr) conspire to produce the resultant photophysical properties. Because the π conjugation within the CNAr ligand was extended, an interesting shift in the dominant photophysical processes was observed. When the CNAr conjugation length is short, as in 1, the phenanthroline 3LC state dominates, resulting in a configurationally mixed triplet excited state of both LC and MLCT character. With more extended π conjugation in the CNAr subunit (2-4), the initially generated 3LC(phen)/3MLCT excited state ultimately migrates to the CNAr 3LC state on the order of tens of picoseconds. Molecules 3 and 4 in this series also feature unique examples of inorganic excimer formation, as evidenced by dynamic self-quenching in the corresponding PL intensity decays accompanied by the observation of a short-lived low-energy emission feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...