Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Oncol ; 13: 1143881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020867

RESUMO

The treatment of chronic lymphocytic leukemia (CLL) patients with venetoclax-based regimens has demonstrated efficacy and a safety profile, but the emergence of resistant cells and disease progression is a current complication. Therapeutic target of sphingosine kinases (SPHK) 1 and 2 has opened new opportunities in the treatment combinations of cancer patients. We previously reported that the dual SPHK1/2 inhibitor, SKI-II enhanced the in vitro cell death triggered by fludarabine, bendamustine or ibrutinib and reduced the activation and proliferation of chronic lymphocytic leukemia (CLL) cells. Since we previously showed that autologous activated T cells from CLL patients favor the activation of CLL cells and the generation of venetoclax resistance due to the upregulation of BCL-XL and MCL-1, we here aim to determine whether SPHK inhibitors affect this process. To this aim we employed the dual SPHK1/2 inhibitor SKI-II and opaganib, a SPHK2 inhibitor that is being studied in clinical trials. We found that SPHK inhibitors reduce the activation of CLL cells and the generation of venetoclax resistance induced by activated T cells mainly due to a reduced upregulation of BCL-XL. We also found that SPHK2 expression was enhanced in CLL cells by activated T cells of the same patient and the presence of venetoclax selects resistant cells with high levels of SPHK2. Of note, SPHK inhibitors were able to re-sensitize already resistant CLL cells to a second venetoclax treatment. Our results highlight the therapeutic potential of SPHK inhibitors in combination with venetoclax as a promising treatment option for the patients.

2.
Life Sci ; 316: 121404, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681184

RESUMO

Epithelial renal cells have the ability to adopt different cellular phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). These processes are increasingly recognized as important repair factors following acute renal tubular injury. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with impact on proliferation, growth, migration, and differentiation which has significant implication in various diseases including cancer and kidney fibrosis. Here we demonstrated that S1P can exert by activating S1P receptor 2 (S1PR2) different functions depending on the stage of cell differentiation. We observed that the differences in the migratory profile of Madin-Darby canine kidney (MDCK) cells depend both on their stage of cell differentiation and the activity of S1PR2, a receptor that can either promote or inhibit the migratory process. Meanwhile in non-differentiated cells S1PR2 activation avoids migration, it is essential on fully differentiated cells. This is the first time that an antagonist effect of S1PR2 was reported for the same cell type. Moreover, in fully differentiated cells, S1PR2 activation is crucial for the progression of EMT - characterized by adherent junctions disassembly, ß-catenin and SNAI2 nuclear translocation and vimentin expression- and depends on ERK 1/2 activation and nuclear translocation. These findings provide a new perspective about the different S1PR2 functions depending on the stage of cell differentiation that can be critical to the modulation of renal epithelial cell plasticity, potentially paving the way for innovative research with pathophysiologic relevance.


Assuntos
Diferenciação Celular , Rim , Receptores de Esfingosina-1-Fosfato , Animais , Cães , Lisofosfolipídeos/metabolismo , Células Madin Darby de Rim Canino , Receptores de Lisoesfingolipídeo/metabolismo , Rim/citologia
3.
J Cell Physiol ; 237(10): 3883-3899, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908199

RESUMO

The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.


Assuntos
Transição Epitelial-Mesenquimal , Nefropatias , Animais , Células Epiteliais/metabolismo , Fibrose , Medula Renal/metabolismo , Ratos , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33454434

RESUMO

Collecting duct cells are physiologically subject to the hypertonic environment of the kidney. This condition is necessary for kidney maturation and function but represents a stress condition that requires active strategies to ensure epithelial integrity. Madin-Darby Canine Kidney (MDCK) cells develop the differentiated phenotype of collecting duct cells when subject to hypertonicity, serving as a model to study epithelial preservation and homeostasis in this particular environment. The integrity of epithelia is essential to achieve the required functional barrier. One of the mechanisms that ensure integrity is cell extrusion, a process initiated by sphingosine-1-phosphate (S1P) to remove dying or surplus cells while maintaining the epithelium barrier. Both types start with the activation of S1P receptor type 2, located in neighboring cells. In this work, we studied the effect of cell differentiation induced by hypertonicity on cell extrusion in MDCK cells, and we provide new insights into the associated molecular mechanism. We found that the different stages of differentiation influence the rate of apoptotic cell extrusion. Besides, we used a novel methodology to demonstrate that S1P increase in extruding cells of differentiated monolayers. These results show for first time that cell extrusion is triggered by the single-cell synthesis of S1P by sphingosine kinase 2 (SphK2), but not SphK1, of the extruding cell itself. Moreover, the inhibition or knockdown of SphK2 prevents cell extrusion and cell-cell junction protein degradation, but not apoptotic nuclear fragmentation. Thus, we propose SphK2 as the biochemical key to ensure the preservation of the epithelial barrier under hypertonic stress.


Assuntos
Apoptose , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Animais , Diferenciação Celular , Cães , Rim/citologia , Rim/metabolismo , Células Madin Darby de Rim Canino , Análise de Célula Única , Esfingosina/metabolismo
5.
PLoS One ; 14(3): e0213917, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897151

RESUMO

Sphingolipids regulate several aspects of cell behavior and it has been demonstrated that cells adjust their sphingolipid metabolism in response to metabolic needs. Particularly, sphingosine-1-phosphate (S1P), a final product of sphingolipid metabolism, is a potent bioactive lipid involved in the regulation of various cellular processes, including cell proliferation, cell migration, actin cytoskeletal reorganization and cell adhesion. In previous work in rat renal papillae, we showed that sphingosine kinase (SK) expression and S1P levels are developmentally regulated and control de novo sphingolipid synthesis. The aim of the present study was to evaluate the participation of SK/S1P pathway in the triggering of cell differentiation by external hypertonicity. We found that hypertonicity evoked a sharp decrease in SK expression, thus activating the de novo sphingolipid synthesis pathway. Furthermore, the inhibition of SK activity evoked a relaxation of cell-cell adherens junction (AJ) with accumulation of the AJ complex (E-cadherin/ß-catenin/α-catenin) in the Golgi complex, preventing the acquisition of the differentiated cell phenotype. This phenotype alteration was a consequence of a sphingolipid misbalance with an increase in ceramide levels. Moreover, we found that SNAI1 and SNAI2 were located in the cell nucleus with impairment of cell differentiation induced by SK inhibition, a fact that is considered a biochemical marker of epithelial to mesenchymal transition. So, we suggest that the expression and activity of SK1, but not SK2, act as a control system, allowing epithelial cells to synchronize the various branches of sphingolipid metabolism for an adequate cell differentiation program.


Assuntos
Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/biossíntese , Esfingosina/análogos & derivados , Junções Aderentes/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Cães , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Soluções Hipertônicas , Células Madin Darby de Rim Canino , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Esfingosina/metabolismo
6.
J Cell Physiol ; 234(8): 13387-13402, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30624780

RESUMO

We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.


Assuntos
Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/crescimento & desenvolvimento , Animais , Aquaporina 2/metabolismo , Diferenciação Celular , Movimento Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glicoconjugados/metabolismo , Imageamento Tridimensional , Medula Renal/citologia , Medula Renal/crescimento & desenvolvimento , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Lectinas de Plantas/metabolismo , Ratos , Ratos Wistar , Receptor B2 da Bradicinina/metabolismo , Imagem com Lapso de Tempo
8.
J Cell Physiol ; 233(8): 6173-6195, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29330844

RESUMO

It is known that bradykinin (BK) B2 receptor (B2R) is expressed in the collecting duct (CD) cells of the newborn rat kidney, but little is known about its role during early postnatal life. Therefore, we hypothesize that BK could participate in the mechanisms that mediate CD formation during the postnatal renal development. Performing primary cultures, combined with biochemical, immunocytochemical, and time-lapse analysis, we studied the role of BK in CD cell behavior isolated from renal papilla of neonatal rats. A reverse relationship was observed between B2R expression and the degree of CD epithelial cell sheet maturation. BK stimulation induced CD cell association upon B2R activation. The lack of B2R expression in cells showing mature adherens junctions suggested that BK is mostly involved in early adhesive events, thus favoring the initial formation of CD during development. Time-lapse analysis revealed that BK induced a high protrusive activity of CD cells, denoted by ruffle formation and lamellipodia extension. PI3K was involved in the BK-induced CD cell-cell association and the acquisition of the migratory phenotype since, when inhibited, membrane ruffles, and filopodia between cells diminished. Results indicate that the actions of BK mediated by PI3K activation were due to the downstream Akt and Rac pathways. This study, performed with CD cells that were not genetically manipulated, provides new experimental evidence supporting a novel role of BK in rat renal CD organization. As B2R blockade results in abnormal tubular differentiation, our results contribute to better understanding the etiology of human congenital renal malformation and diseases.


Assuntos
Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
10.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 309-322, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128370

RESUMO

Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.


Assuntos
Células Epiteliais/enzimologia , Transição Epitelial-Mesenquimal , Túbulos Renais Coletores/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Animais , Adesão Celular , Células Epiteliais/citologia , Túbulos Renais Coletores/citologia , Masculino , Ratos , Ratos Wistar , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
11.
J Lipid Res ; 58(7): 1428-1438, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28515139

RESUMO

Ceramides (Cers) and complex sphingolipids with defined acyl chain lengths play important roles in numerous cell processes. Six Cer synthase (CerS) isoenzymes (CerS1-6) are the key enzymes responsible for the production of the diversity of molecular species. In this study, we investigated the changes in sphingolipid metabolism during the differentiation of Madin-Darby canine kidney (MDCK) cells. By MALDI TOF TOF MS, we analyzed the molecular species of Cer, glucosylceramide (GlcCer), lactosylceramide (LacCer), and SM in nondifferentiated and differentiated cells (cultured under hypertonicity). The molecular species detected were the same, but cells subjected to hypertonicity presented higher levels of C24:1 Cer, C24:1 GlcCer, C24:1 SM, and C16:0 LacCer. Consistently with the molecular species, MDCK cells expressed CerS2, CerS4, and CerS6, but with no differences during cell differentiation. We next evaluated the different synthesis pathways with sphingolipid inhibitors and found that cells subjected to hypertonicity in the presence of amitriptyline, an inhibitor of acid sphingomyelinase, showed decreased radiolabeled incorporation in LacCer and cells did not develop a mature apical membrane. These results suggest that hypertonicity induces the endolysosomal degradation of SM, generating the Cer used as substrate for the synthesis of specific molecular species of glycosphingolipids that are essential for MDCK cell differentiation.


Assuntos
Diferenciação Celular , Ceramidas/metabolismo , Animais , Cães , Regulação Enzimológica da Expressão Gênica , Células Madin Darby de Rim Canino , Oxirredutases/genética
12.
Biochim Biophys Acta ; 1861(6): 513-23, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27032756

RESUMO

Phosphatidylcholine (PC) is the main constituent of mammalian cell membranes. Consequently, preservation of membrane PC content and composition - PC homeostasis - is crucial to maintain cellular life. PC biosynthetic pathway is generally controlled by CTP:phosphocholine cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCTα is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum redistribution. However, most of the enzyme is located inside the nuclei. Here, we demonstrate that CCTα is the most abundant isoform in renal collecting duct cells, and its redistribution is dependent on endogenous prostaglandins. Previously we have demonstrated that PC synthesis was inhibited by indomethacin (Indo) treatment, and this effect was reverted by exogenous PGD(2). In this work we found that Indo induced CCTα distribution into intranuclear Lamin A/C foci. Exogenous PGD(2) reverted this effect by inducing CCTα redistribution to nuclear envelope, suggesting that PGD(2) maintains PC synthesis by CCTα mobilization. Interestingly, we found that the effect of PGD(2) was dependent on ERK1/2 activation. In conclusion, our previous observations and the present results lead us to suggest that papillary cells possess the ability to maintain their structural integrity through the synthesis of their own survival molecule, PGD(2), by modulating CCTα intracellular location.


Assuntos
Núcleo Celular/enzimologia , Colina-Fosfato Citidililtransferase/metabolismo , Células Epiteliais/efeitos dos fármacos , Membrana Nuclear/enzimologia , Prostaglandina D2/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/metabolismo , Indometacina/farmacologia , Rim/citologia , Masculino , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Ratos Wistar
13.
J Lipid Res ; 56(4): 786-800, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670801

RESUMO

Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and ß- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype.


Assuntos
Diferenciação Celular , Pressão Osmótica , Esfingomielinas/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Madin Darby de Rim Canino , Fenótipo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo
14.
Biochim Biophys Acta ; 1843(12): 2991-3003, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25241342

RESUMO

In epithelial cells, vinculin is enriched in cell adhesion structures but is in equilibrium with a large cytosolic pool. It is accepted that when cells adhere to the extracellular matrix, a part of the soluble cytosolic pool of vinculin is recruited to specialized sites on the plasma membrane called focal adhesions (FAs) by binding to plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). We have previously shown that bradykinin (BK) induces both a reversible dissipation of vinculin from FAs, by the phospholipase C (PLC)-mediated hydrolysis of PtdIns(4,5)P2, and the concomitant internalization of vinculin. Here, by using an immunomagnetic method, we isolated vinculin-containing vesicles induced by BK stimulation. By analyzing the presence of proteins involved in vesicle traffic, we suggest that vinculin can be delivered in the site of FA reassembly by a vesicular endocytic recycling pathway. We also observed the formation of vesicle-like structures containing vinculin in the cytosol of cells treated with lipid membrane-affecting agents, which caused dissipation of FAs due to their deleterious effect on membrane microdomains where FAs are inserted. However, these vesicles did not contain markers of the recycling endosomal compartment. Vinculin localization in vesicles has not been reported before, and this finding challenges the prevailing model of vinculin distribution in the cytosol. We conclude that the endocytic recycling pathway of vinculin could represent a physiological mechanism to reuse the internalized vinculin to reassembly new FAs, which occurs after long time of BK stimulation, but not after treatment with membrane-affecting agents.

15.
J Lipid Res ; 54(3): 677-691, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269393

RESUMO

Hyperosmolality is a key signal for renal physiology. On the one hand, it contributes to the differentiation of renal medullary structures and to the development of the urinary concentrating mechanism. On the other, it is a stress factor. In both cases, hyperosmolality activates processes that require an adequate extension of cellular membranes. In the present work, we examined whether hyperosmolality regulates phospholipid biosynthesis, which is needed for the membrane biogenesis in the renal epithelial cell line Madin-Darby canine kidney (MDCK). Because phospholipids are the structural determinants of all cell membranes, we evaluated their content, synthesis, and regulation in MDCK cultures subjected to different hyperosmotic concentrations of NaCl, urea, or both. Hyperosmolality increased phospholipid content in a concentration-dependent manner. Such an effect was exclusively due to changes in NaCl concentration and occurred at the initial stage of hyperosmolar treatment concomitantly with the expression of the osmoprotective protein COX-2. The hypertonic upregulation of phosphatidylcholine (PC) synthesis, the main constituent of all cell membranes, involved the transcriptional activation of two main regulatory enzymes, choline kinase (CK) and cytidylyltransferase α (CCTα) and required ERK1/2 activation. Considering that physiologically, renal medullary cells are constantly exposed to high and variable NaCl, these findings could contribute to explaining how renal cells could maintain cellular integrity even in a nonfavorable environment.


Assuntos
Células Epiteliais/metabolismo , Rim/citologia , Pressão Osmótica/fisiologia , Fosfolipídeos/metabolismo , Animais , Linhagem Celular , Cães , Citometria de Fluxo
16.
Steroids ; 77(13): 1313-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22982564

RESUMO

Tetrahymena thermophila is a free-living ciliate with no exogenous sterol requirement. However, it can perform several modifications on externally added sterols including desaturation at C5(6), C7(8), and C22(23). Sterol desaturases in Tetrahymena are microsomal enzymes that require Cyt b(5), Cyt b(5) reductase, oxygen, and reduced NAD(P)H for their activity, and some of the genes encoding these functions have recently been identified. The DES5A gene encodes a C-5(6) sterol desaturase, as shown by gene knockout in Tetrahymena. To confirm and extend that result, and to develop new approaches to gene characterization in Tetrahymena, we have now, expressed DES5A in Saccharomyces cerevisiae. The DES5A gene was codon optimized and expressed in a yeast mutant, erg3Δ, which is disrupted for the gene encoding the S. cerevisiae C-5(6) sterol desaturase ERG3. The complemented strain was able to accumulate 74% of the wild type level of ergosterol, and also lost the hypersensitivity to cycloheximide associated with the lack of ERG3 function. C-5(6) sterol desaturases are expected to function at the endoplasmic reticulum. Consistent with this, a GFP-tagged copy of Des5Ap was localized to the endoplasmic reticulum in both Tetrahymena and yeast. This work shows for the first time that both function and localization are conserved for a microsomal enzyme between ciliates and fungi, notwithstanding the enormous evolutionary distance between these lineages. The results suggest that heterologous expression of ciliate genes in S. cerevisiae provides a useful tool for the characterization of genes in Tetrahymena, including genes encoding membrane protein complexes.


Assuntos
Citocromos b5/metabolismo , Retículo Endoplasmático/enzimologia , Ergosterol/biossíntese , Mutação , Oxirredutases/biossíntese , Saccharomyces cerevisiae/genética , Tetrahymena thermophila/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Tetrahymena thermophila/citologia
17.
Biochim Biophys Acta ; 1821(6): 884-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22387616

RESUMO

Glycosphingolipids (GSLs), which are highly concentrated at the apical membrane of polarized epithelial cells, are key components of cell membranes and are involved in a large number of processes. Here, we investigated the ability of hypertonicity (high salt medium) to induce Madin-Darby Canine Kidney (MDCK) cell differentiation and found an increase in GSL synthesis under hypertonic conditions. Then, we investigated the role of GSLs in MDCK cell differentiation induced by hypertonicity by using two approaches. First, cultured cells were depleted of GSLs by exposure to D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). Second, cells were transfected with an siRNA specific to glucosylceramide synthase, the key enzyme in GSL synthesis. Exposure of cells to both treatments resulted in the impairment of the development of the apical membrane domain and the formation of the primary cilium. Enzymatic inhibitions of the de novo and the salvage pathway of GSL synthesis were used to determine the source of ceramide responsible of the GSL increase involved in the development of the apical membrane domain induced by hypertonicity. The results from this study show that extracellular hypertonicity induces the development of a differentiated apical membrane in MDCK cells by performing a sphingolipid metabolic program that includes the formation of a specific pool of GSLs. The results suggest as precursor a specific pool of ceramides formed by activation of a Fumonisin B1-resistant ceramide synthase as a component of the salvage pathway.


Assuntos
Diferenciação Celular/fisiologia , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/biossíntese , Modelos Biológicos , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Ceramidas/biossíntese , Cílios/efeitos dos fármacos , Cílios/genética , Cílios/fisiologia , Cães , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Rim/citologia , Rim/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Morfolinas/farmacologia , Oxirredutases/metabolismo , Interferência de RNA , Solução Salina Hipertônica/farmacologia
18.
Biochim Biophys Acta ; 1818(3): 491-501, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155258

RESUMO

In epithelial tissues, adherens junctions (AJ) mediate cell-cell adhesion by using proteins called E-cadherins, which span the plasma membrane, contact E-cadherin on other cells and connect with the actin cytoskeleton inside the cell. Although AJ protein complexes are inserted in detergent-resistant membrane microdomains, the influence of membrane lipid composition in the preservation of AJ structures has not been extensively addressed. In the present work, we studied the contribution of membrane lipids to the preservation of renal epithelial cell-cell adhesion structures. We biochemically characterized the lipid composition of membranes containing AJ complexes. By using lipid membrane-affecting agents, we found that such agents induced the formation of new AJ protein-containing domains of different lipid composition. By using both biochemical approaches and fluorescence microscopy we demonstrated that the membrane phospholipid composition plays an essential role in the in vivo maintenance of AJ structures involved in cell-cell adhesion structures in renal papillary collecting duct cells.


Assuntos
Caderinas/metabolismo , Comunicação Celular/fisiologia , Células Epiteliais/metabolismo , Adesões Focais/metabolismo , Túbulos Renais Coletores/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Adesão Celular/fisiologia , Células Cultivadas , Células Epiteliais/citologia , Túbulos Renais Coletores/citologia , Masculino , Ratos , Ratos Wistar
19.
Biochim Biophys Acta ; 1801(11): 1184-94, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20647050

RESUMO

Phosphatidylcholine (PtdCho) is the most abundant phospholipid in eukaryotic membranes and its biosynthetic pathway is generally controlled by CTP:Phosphocholine Cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCT is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum (ER) translocation; however, most of the enzyme is intranuclearly located. Here we demonstrate that CCTα is concentrated in the nucleoplasm of MDCK cells. Confocal immunofluorescence revealed that extracellular hypertonicity shifted the diffuse intranuclear distribution of the enzyme to intranuclear domains in a foci pattern. One population of CCTα foci colocalised and interacted with lamin A/C speckles, which also contained the pre-mRNA processing factor SC-35, and was resistant to detergent and salt extraction. The lamin A/C silencing allowed us to visualise a second more labile population of CCTα foci that consisted of lamin A/C-independent foci non-resistant to extraction. We demonstrated that CCTα translocation is not restricted to its redistribution from the nucleus to the ER and that intranuclear redistribution must thus be considered. We suggest that the intranuclear organelle distribution of CCTα is a novel mechanism for the regulation of enzyme activity.


Assuntos
Núcleo Celular/metabolismo , Colina-Fosfato Citidililtransferase/fisiologia , Enzimas/química , Fosfatidilcolinas/biossíntese , Animais , Linhagem Celular , Colina-Fosfato Citidililtransferase/química , Citoplasma/metabolismo , Cães , Retículo Endoplasmático/metabolismo , Inativação Gênica , Lamina Tipo A/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Transporte Proteico , Fatores de Tempo
20.
Am J Physiol Renal Physiol ; 297(5): F1181-91, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759271

RESUMO

Focal adhesions (FAs) are structures of cell attachment to the extracellular matrix. We previously demonstrated that the intrarenal hormone bradykinin (BK) induces the restructuring of FAs in papillary collecting duct cells by dissipation of vinculin, but not talin, from FAs through a mechanism that involves PLCbeta activation, and that it also induces actin cytoskeleton reorganization. In the present study we investigated the mechanism by which BK induces the dissipation of vinculin-stained FAs in collecting duct cells. We found that BK induces the internalization of vinculin by a noncaveolar and independent pinocytic pathway and that at least a fraction of this protein is delivered to the recycling endosomal compartment, where it colocalizes with the transferrin receptor. Regarding the reassembly of vinculin-stained FAs, we found that BK induces the formation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-enriched vinculin-containing vesicles, which, by following a polarized exocytic route, transport vinculin to the site of FA assembly, an action that depends on actin filaments. The present study, which was carried out with cells that were not genetically manipulated, shows for the first time that BK induces the formation of vesicle-like structures containing vinculin and PtdIns(4,5)P2, which transport vinculin to the site of FA assembly. Therefore, the modulation of the formation of these vesicle-like structures could be a physiological mechanism through which the cell can reuse the BK-induced internalized vinculin to be delivered for newly forming FAs in renal papillary collecting duct cells.


Assuntos
Bradicinina/farmacologia , Túbulos Renais Coletores/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vinculina/metabolismo , Animais , Caveolina 1/metabolismo , Endocitose/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Fosfatidilinositol 4,5-Difosfato , Pinocitose/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor B2 da Bradicinina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...