Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 709724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349750

RESUMO

Chlamydiae are Gram-negative, obligate intracellular bacteria, which infect animals and humans. Adhesion to host cells, the first step in the infection process, is mediated by polymorphic membrane proteins (Pmps). Pmps constitute the largest chlamydial protein family, with 9 members (subdivided into six subtypes) in C. trachomatis and 21 in C. pneumoniae, and are characterized by the presence of multiple copies of GGA(I,L,V) and FxxN motifs. Motif-rich fragments of all nine C. trachomatis Pmps act as adhesins and are essential for infection. As autotransporters, most Pmp proteins are secreted through their ß-barrel domain and localize on the surface of the chlamydial cell, where most of them are proteolytically processed. Classical autotransporters are monomeric proteins, which can function as toxins, proteases, lipases and monoadhesive adhesins. Here we show that selected recombinant C. trachomatis Pmp fragments form functional adhesion-competent multimers. They assemble into homomeric and heteromeric filaments, as revealed by non-denaturing gel electrophoresis, size-exclusion chromatography and electron microscopy. Heteromeric filaments reach 2 µm in length, significantly longer than homomeric structures. Filament formation was independent of the number of motifs present in the fragment(s) concerned and their relative affinity for host cells. Our functional studies demonstrated that only adhesion-competent oligomers were able to block a subsequent infection. Pre-loading of infectious chlamydial cells with adhesion-competent Pmp oligomers maintained the subsequent infection, while adhesion-incompetent structures reduced infectivity, presumably by blocking the function of endogenous Pmps. The very large number of possible heteromeric and homomeric Pmp complexes represents a novel mechanism to ensure stable adhesion and possibly host cell immune escape.

2.
Front Microbiol ; 12: 656209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854490

RESUMO

Chlamydia psittaci is the etiological agent of chlamydiosis in birds and can be transmitted to humans, causing severe systemic disease. C. psittaci infects a broad range of hosts; strains are isolated not only from birds but also from mammals, where they seem to have a reduced infectious and zoonotic potential. Comparative analysis of chlamydial genomes revealed the coding sequences of polymorphic membrane proteins (Pmps) to be highly variable regions. Pmps are characterized as adhesins in C. trachomatis and C. pneumoniae and are immunoreactive proteins in several Chlamydia species. Thus, Pmps are considered to be associated with tissue tropism and pathogenicity. C. psittaci harbors 21 Pmps. We hypothesize that the different infectious potential and host tropism of avian and mammalian C. psittaci strains is dependent on differences in their Pmp repertoires. In this study, we experimentally confirmed the different virulence of avian and mammalian strains, by testing the survival rate of infected embryonated eggs and chlamydiae dissemination in the embryos. Further, we investigated the possible involvement of Pmps in host tropism. Analysis of pmp sequences from 10 C. psittaci strains confirmed a high degree of variation, but no correlation with host tropism was identified. However, comparison of Pmp expression profiles from different strains showed that Pmps of the G group are the most variably expressed, also among avian and mammalian strains. To investigate their functions, selected Pmps were recombinantly produced from one avian and one mammalian representative strain and their adhesion abilities and relevance for the infection of C. psittaci strains in avian and mammalian cells were tested. For the first time, we identified Pmp22D, Pmp8G, and OmcB as relevant adhesins, essential during infection of C. psittaci strains in general. Moreover, we propose Pmp17G as a possible key player for host adaptation, as it could only bind to and influence the infection in avian cells, but it had no relevant impact towards infection in mammalian cells. These data support the hypothesis that distinct Pmp repertoires in combination with specific host factors may contribute to host tropism of C. psittaci strains.

3.
Pathogens ; 9(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126635

RESUMO

To identify genome-based features characteristic of the avian and human pathogen Chlamydia(C.) psittaci and related chlamydiae, we analyzed whole-genome sequences of 33 strains belonging to 12 species. Using a novel genome analysis tool termed Roary ILP Bacterial Annotation Pipeline (RIBAP), this panel of strains was shown to share a large core genome comprising 784 genes and representing approximately 80% of individual genomes. Analyzing the most variable genomic sites, we identified a set of features of C. psittaci that in its entirety is characteristic of this species: (i) a relatively short plasticity zone of less than 30,000 nt without a tryptophan operon (also in C. abortus, C. avium, C. gallinacea, C. pneumoniae), (ii) a characteristic set of of Inc proteins comprising IncA, B, C, V, X, Y (with homologs in C. abortus, C. caviae and C. felis as closest relatives), (iii) a 502-aa SinC protein, the largest among Chlamydia spp., and (iv) an elevated number of Pmp proteins of subtype G (14 in C. psittaci, 14 in Cand. C. ibidis). In combination with future functional studies, the common and distinctive criteria revealed in this study provide important clues for understanding the complexity of host-specific behavior of individual Chlamydia spp.

4.
Vaccine ; 35(19): 2543-2549, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28385608

RESUMO

OBJECTIVES: To test vaccines, formulated with novel antigens, to protect mice against Chlamydia infections. METHODS: To determine the ability of polymorphic membrane proteins (Pmps) to induce cross-species protective immune responses, recombinant fragments from all nine C. trachomatis serovar E Pmps were used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 as adjuvants. C. muridarum recombinant MOMP and PBS, formulated with the same adjuvants, were used as positive and negative controls, respectively. Mice were challenged intranasally with 104 inclusion-forming units (IFU) of C. muridarum. Animals were weighed daily and at 10days post-challenge, they were euthanized, their lungs harvested, weighed and the number of chlamydial IFU counted. RESULTS: Following vaccination the nine Pmps elicited immune responses. Based on body weight changes, or number of IFU recovered from lungs, mice vaccinated with Pmp C, G or H were the best protected. For example, over the 10-day period, the negative control group vaccinated with PBS lost significantly more body weight than mice immunized with PmpC or G (P<0.05). C. muridarum MOMP vaccinated mice were better protected against body weight losses than any group immunized with Pmps. Also, the median number of IFU recovered from the lungs of mice vaccinated with PmpC (72×106) or PmpH (61×106) was significantly less than from mice immunized with PBS (620×106; P<0.05). As determined by the number of IFU, all Pmps elicited less protection than C. muridarum MOMP (0.078×106 IFU; P<0.05). CONCLUSIONS: This is the first time PmpC has been shown to elicit cross-species protection against a respiratory challenge. Additional work with Pmps C, G and H is recommended to determine their ability to protect animal models against genital and ocular challenges.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Chlamydia trachomatis/imunologia , Proteção Cruzada , Proteínas de Membrana/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Bacterianas/administração & dosagem , Reações Cruzadas , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Camundongos Endogâmicos BALB C , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
5.
Pathog Dis ; 73(1): 1-3, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25854004

RESUMO

A mouse model for Chlamydia suis genital infection was developed. Ninety-nine mice were randomly divided into three groups and intravaginally inoculated with chlamydia: 45 mice (group 1) received C. suis purified elementary bodies (EBs), 27 (group 2) were inoculated with C. trachomatis genotype E EBs and 27 mice (group 3) with C. trachomatis genotype F EBs. Additionally, 10 mice were used as a negative control. At seven days post-infection (dpi) secretory anti-C. suis IgA were recovered from vaginal swabs of all C. suis inoculated mice. Chlamydia suis was isolated from 93, 84, 71 and 33% vaginal swabs at 3, 5, 7 and 12 dpi. Chlamydia trachomatis genotype E and F were isolated from 100% vaginal swabs up to 7 dpi and from 61 and 72%, respectively, at 12 dpi. Viable C. suis and C. trachomatis organisms were isolated from uterus and tubes up to 16 and 28 dpi, respectively. The results of the present study show the susceptibility of mice to intravaginal inoculation with C. suis. A more rapid course and resolution of C. suis infection, in comparison to C. trachomatis, was highlighted. The mouse model could be useful for comparative investigations involving C. suis and C. trachomatis species.


Assuntos
Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia/isolamento & purificação , Modelos Animais de Doenças , Infecções do Sistema Genital/microbiologia , Infecções do Sistema Genital/patologia , Animais , Tubas Uterinas/microbiologia , Feminino , Imunoglobulina A Secretora/análise , Camundongos Endogâmicos BALB C , Útero/microbiologia , Vagina/química , Vagina/imunologia , Vagina/microbiologia
6.
Expert Rev Anti Infect Ther ; 11(11): 1215-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24111488

RESUMO

Chlamydiae are obligate intracellular bacteria that cause serious diseases in a wide range of hosts. Chlamydia trachomatis is one of the leading sexually transmitted pathogens in the world. Because vaccines are not currently available, effective drugs are essential. In both animals and humans, chlamydial infections are often treated with tetracycline or its derivatives. A stable tetracycline-resistant phenotype was described in Chlamydia suis strains from pigs in the USA and in Europe. In humans, there are reports of tetracycline treatment failure and the in vitro adaptability of C. trachomatis to evolve to antibiotic resistance has been described, suggesting the pressing need to search for alternative and effective classes of antimicrobial drugs. Host defense peptides (HDPs) are known as direct antimicrobial agents as well as innate immune modulators. Being active against multidrug-resistant bacteria, HDPs are attractive candidates as templates for new drugs. A number of studies evaluated the activity of natural and synthetic HDPs against Chlamydia spp., showing C. trachomatis to be the most sensitive among chlamydia species tested. Protegrins and α-helical peptides were the most active among the HDPs assessed.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Fatores Imunológicos/farmacologia , Tetraciclina/uso terapêutico , Antibacterianos/farmacologia , Catelicidinas/imunologia , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/efeitos dos fármacos , Defensinas/imunologia , Farmacorresistência Bacteriana , Humanos , Imunidade Inata , Tetraciclina/farmacologia
7.
New Microbiol ; 36(1): 85-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23435820

RESUMO

In the present study, a monoclonal antibody (mAb), D5-14, raised in our laboratory against Chlamydia trachomatis LGV2 serotype, stained Simkania negevensis inclusions in S. negevensis-infected cells by using the immunofluorescence test. D5-14 mAb, reacting in immunoblot with an approximately 64-66-kDa protein of C. trachomatis LGV2 serotype, recognized a protein with the same molecular mass when tested with S. negevensis elementary bodies.


Assuntos
Chlamydia trachomatis/imunologia , Chlamydiales/isolamento & purificação , Anticorpos Antibacterianos/sangue , Anticorpos Monoclonais/imunologia , Western Blotting , Técnicas de Cultura de Células/métodos , Chlamydiales/imunologia , Imunofluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...