Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Rev Lett ; 129(22): 222501, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493444

RESUMO

The Cryogenic Underground Observatory for Rare Events (CUORE) at Laboratori Nazionali del Gran Sasso of INFN in Italy is an experiment searching for neutrinoless double beta (0νßß) decay. Its main goal is to investigate this decay in ^{130}Te, but its ton-scale mass and low background make CUORE sensitive to other rare processes as well. In this Letter, we present our first results on the search for 0νßß decay of ^{128}Te, the Te isotope with the second highest natural isotopic abundance. We find no evidence for this decay, and using a Bayesian analysis we set a lower limit on the ^{128}Te 0νßß decay half-life of T_{1/2}>3.6×10^{24} yr (90% CI). This represents the most stringent limit on the half-life of this isotope, improving by over a factor of 30 the previous direct search results, and exceeding those from geochemical experiments for the first time.


Assuntos
Granisetron , Meia-Vida , Teorema de Bayes
3.
Phys Rev Lett ; 126(17): 171801, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988435

RESUMO

We measured two-neutrino double beta decay of ^{130}Te using an exposure of 300.7 kg yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution. The half-life is in agreement with past measurements with a strongly reduced uncertainty: T_{1/2}^{2ν}=7.71_{-0.06}^{+0.08}(stat)_{-0.15}^{+0.12}(syst)×10^{20} yr. This measurement is the most precise determination of the ^{130}Te 2νßß decay half-life to date.

4.
Phys Rev Lett ; 124(12): 122501, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281829

RESUMO

We report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.38±0.07)×10^{-2} counts/(keV kg yr)) in the 0νßß decay region of interest and, with a total exposure of 372.5 kg yr, we attain a median exclusion sensitivity of 1.7×10^{25} yr. We find no evidence for 0νßß decay and set a 90% credibility interval Bayesian lower limit of 3.2×10^{25} yr on the ^{130} Te half-life for this process. In the hypothesis that 0νßß decay is mediated by light Majorana neutrinos, this results in an upper limit on the effective Majorana mass of 75-350 meV, depending on the nuclear matrix elements used.

5.
PLoS One ; 13(8): e0200910, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30133443

RESUMO

This paper describes the production and chemical separation of the 163Ho isotope that will be used in several nuclear physics experiments aiming at measuring the neutrino mass as well as the neutron cross section of the 163Ho isotope. For this purpose, several batches of enriched 162Er have been irradiated at the Institut Laue-Langevin high flux reactor to finally produce 6 mg or 100 MBq of the desired 163Ho isotope. A portion of the Er/Ho mixture is then subjected to a sophisticated chemical separation involving ion exchange chromatography to isolate the Ho product from the Er target material. Before irradiation, a thorough analysis of the impurity content was performed and its implication on the produced nuclide inventory will be discussed.


Assuntos
Hólmio/química , Hólmio/isolamento & purificação , Radioquímica/métodos , Isótopos , Nêutrons , Física Nuclear
6.
Phys Rev Lett ; 115(10): 102502, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382673

RESUMO

We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of (130)Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV FWHM and 0.058±0.004(stat)±0.002(syst)counts/(keV kg yr), respectively. The median 90% C.L. lower-limit half-life sensitivity of the experiment is 2.9×10(24) yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of (130)Te and place a Bayesian lower bound on the decay half-life, T(1/2)(0ν)>2.7×10(24) yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of (130)Te from the Cuoricino experiment we obtain T(1/2)(0ν)>4.0×10(24) yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, m(ßß)<270-760 meV.

7.
Eur Phys J C Part Fields ; 75(3): 112, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25995704

RESUMO

The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of [Formula: see text]Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted [Formula: see text]Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

8.
J Low Temp Phys ; 1842015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33087985

RESUMO

For experiments with high arrival rates, reliable identification of nearly-coincident events can be crucial. For calorimetric measurements to directly measure the neutrino mass such as HOLMES, unidentified pulse pile-ups are expected to be a leading source of experimental error. Although Wiener filtering can be used to recognize pile-up, it suffers errors due to pulse-shape variation from detector nonlinearity, readout dependence on sub-sample arrival times, and stability issues from the ill-posed deconvolution problem of recovering Dirac delta-functions from smooth data. Due to these factors, we have developed a processing method that exploits singular value decomposition to (1) separate single-pulse records from piled-up records in training data and (2) construct a model of single-pulse records that accounts for varying pulse shape with amplitude, arrival time, and baseline level, suitable for detecting nearly-coincident events. We show that the resulting processing advances can reduce the required performance specifications of the detectors and readout system or, equivalently, enable larger sensor arrays and better constraints on the neutrino mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...