Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(1): 101930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226351

RESUMO

Perampanel (PER), a novel 3rd-generation antiseizure drug that modulates altered post-synaptic glutamatergic storming by selectively inhibiting AMPA receptors, is recently approved to treat intractable forms of seizures. However, to date, presumably consequences of long-term PER therapy on the comorbid deleterious psychiatric disturbances and its correlation with neuroinflammatory parameters are not fully investigated in chronic models of epilepsy. Therefore, we investigated the real-time effect of PER on brain electroencephalographic (EEG) activity, behavioral alterations, redox balance, and relative mRNA expression in pentylenetetrazole (PTZ) induced kindling. Male BALB/c mice were pretreated with PER (0.125, 0.25, and 0.5 mg/kg) for 3 weeks and challenged with 11 injections of PTZ at the sub-threshold dose of 40 mg/kg every other day. vEEG from implanted cortical electrodes was monitored to elucidate seizure propagation and behavioral manifestations. Recorded EEG signals exhibited that PER 0.5 mg/kg pretreatment exceptionally impeded the onset of sharp epileptic spike-wave discharges and associated motor symptoms. Additionally, qEEG analysis showed that PER prevented alterations in absolute mean spectral power and reduced RMS amplitude of epileptogenic spikes vs PTZ control. Furthermore, our outcomes illustrated that PER dose-dependently attenuated PTZ-evoked anxiety-like behavior, memory deficits, and depressive-like behavior that was validated by a series of behavioral experiments. Moreover PER, significantly reduced lipid peroxidation, AChE, and increased levels of SOD and total thiol in the mice brain via AMPAR antagonism. Post-PTZ kindling provoked overstimulation of BDNF/TrkB signaling and increased release of pro-inflammatory cytokines that were reversed by PER with suppression of iNOS in brain immune cells. In conclusion, our findings highlight that PER might play an auspicious preventive role in the proepileptic transformation of brain circuits via suppression of BDNF/TrkB signaling and reduced transcriptional levels of neuroinflammatory markers leading to improvised epilepsy-induced neurobehavioral and neurochemical effects.

2.
Saudi Pharm J ; 31(8): 101675, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576858

RESUMO

The physiologically based pharmacokinetic modeling (PBPK) approach can predict drug pharmacokinetics (PK) by combining changes in blood flow and pathophysiological alterations for developing drug-disease models. Cefepime hydrochloride is a parenteral cephalosporin that is used to treat pneumonia, sepsis, and febrile neutropenia, among other things. The current study sought to identify the factors that impact cefepime pharmacokinetics (PK) following dosing in healthy, diseased (CKD and obese), and pediatric populations. For model construction and simulation, the modeling tool PK-SIM was utilized. Estimating cefepime PK following intravenous (IV) application in healthy subjects served as the primary step in the model-building procedure. The prediction of cefepime PK in chronic kidney disease (CKD) and obese populations were performed after the integration of the relevant pathophysiological changes. Visual predictive checks and a comparison of the observed and predicted values of the PK parameters were used to verify the developed model. The results of the PK parameters were consistent with the reported clinical data in healthy subjects. The developed PBPK model successfully predicted cefepime PK as observed from the ratio of the observed and predicted PK parameters as they were within a two-fold error range.

3.
Saudi Pharm J ; 31(2): 191-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36942273

RESUMO

Introduction: Ailanthus altissima is an indigenous plant known for various remedial properties. The present study aimed to evaluate the neuroprotective potential of methanolic extract Ailanthus altissima (AA) bark as current scientific trend is searching plant for neurodegenerative diseases, worldwide. Methodology: In in-vitro experiments, the AA was analyzed for phenols, flavonoids, antioxidative and cholinesterase inhibitory properties with subsequent detailed characterization for secondary metabolites. The in-vivo neurological effects were evaluated in rats through behavioral assessment for anxiety and memory after chronic administration (28 days) of 50-200 mg/kg of AA. At the end of behavior studies, isolated brains were biochemically tested to determine antioxidant enzyme activity. Results: AA was found rich in phenols/flavonoids and active in radical scavenging with the presence of 13 secondary metabolites in UHPLC-MS analysis. The AA yielded anxiolytic effects dose-dependently in the open field, light/dark and elevated-plus maze tests as animals significantly (P < 0.05 vs control group) preferred open arena, illuminated zone and exposed arms of maze. Similarly, the animals treated with AA showed significant (P < 0.05 vs amnesic group) increase in spontaneous alternation, discrimination index in y-maze, novel object recognition tests. Further, AA.Cr treated rats showed noticeably shorter escape latencies in Morris water maze tests.In biochemical analysis, the dissected brains AA treated rats showed reduced levels of AChE and malondialdehyde with increased levels of first-line antioxidant enzymes i.e. glutathione peroxidase and superoxide dismutase. These observed biological effects might be attributed to phenols and flavonoids constituents owned by AA. -The in-silico studies showed thatconessine and lophirone J phytocompounds have good blood-brain barrier permeability and interaction with AChE. Conclusion: The outcomes of this study validate that bark of Ailanthus altissima might work as a source of bioactive phytochemicals of neuroprotective potential.

4.
Saudi Pharm J ; 30(5): 494-507, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693436

RESUMO

Introduction: The pentylenetetrazol (PTZ)-induced kindling model acts through the antagonism of central GABAA receptors and is one of the most widely used experimental animal models to study the characteristics of seizure development, behavioral manifestations and evaluation of antiseizure effects of existing and new drug candidates. Methodology: In the current study, we investigated the impact of chronically administered levetiracetam (50 mg/kg) and sodium selenite (Sod.Se: 0.25 and 0.5 mg/kg) alone and in combination during the kindling process (21 days) in rats. Moreover, the behavioral changes (through the integration of a wide array of behavioral tests) and markers of oxidative stress in isolated brain homogenates were assessed in PTZ- kindled rats. Results: The outcomes from the fully kindled rats revealed the increased seizure score and severity over time with marked behavioral deficits. However, the animals treated with the selected dose of LEV alone showed partial protection from epileptogenesis and amelioration (P < 0.05) of anxiety-like behavior (open filed, light/dark, elevated plus maze tests), cognitive impairment (y-maze, novel object recognition and water maze tests) and depression (sucrose preference test). Moreover, combining the LEV with sodium selenite resulted in a significant neuroprotective effect in comparison to monotherapy by reducing the disease progression and ameliorating behavioral outcomes. The combination of Sod.Se in a dose-dependent manner with LEV produced additive effects as maximum animals remained seizure-free compared to kindled rats (P < 0.05). The attenuation of PTZ induced oxidative stress was evident from the reduced malondialdehyde and elevated superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) level with P < 0.05, as compared to control epileptic rats. These observed results of combination therapy might be due to the antioxidant and neuroprotective properties of Sod.Se, thus augmenting the seizure-modifying potentials of levetiracetam. Conclusion: Overall, the current findings support the prominence of combining the Sod.Se with LEV, over monotherapy to deal with prevailing challenges of drug resistance and neuropsychiatric sufferings common in epileptic patients.

5.
Saudi J Biol Sci ; 28(8): 4384-4398, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354423

RESUMO

In the current study, we investigated the phytochemical and neuropharmacological potential of Indigofera sessiliflora, an indigenous least characterized plant widely distributed in deserted areas of Pakistan. The crude extract of the whole plant Indigofera sessiliflora (IS.CR) was preliminary tested in-vitro for the existence of polyphenol content, antioxidant and anticholinesterase potential followed by detailed chemical characterization through UHPLC-MS. Rats administered with different doses of IS.CR (100-300 mg/kg) for the duration of 4-weeks were behaviorally tested for anxiety and cognition followed by biochemical evaluation of dissected brain. The in-silico studies were employed to predict the blood-brain barrier crossing tendencies of secondary metabolites with the elucidation of the target binding site. The in-vitro assays revealed ample phenols and flavonoids content in IS.CR with adequate anti-oxidant and anticholinesterase potential. The dose-dependent anxiolytic potential of IS.CR was demonstrated in open field (OFT), light/dark (L/D) and elevated plus maze (EPM) tests as animals spent more time in open, illuminated and elevated zones (P < 0.05). In the behavioral tests for learning/memory, the IS.CR reversed the scopolamine-induced cognitive deficits, as animals showed better (P < 0.05) spontaneous alternation and discrimination index in y-maze and novel object recognition (NOR) tests. Similarly, as compared to amnesic rats, the step-through latencies were increased (P < 0.05) and escape latencies were decreased (P < 0.05) in passive avoidance (PAT) and Morris water maze (MWM) tests, respectively. Biochemical analysis of rat brains showed significant reduction in malondialdehyde and acetylcholinesterase levels, alongwith preservation of glutathione peroxidase and superoxide dismutase activity. The docking studies further portrayed a possible interaction of detected phytoconstituents with acetylcholinesterase target. The results of the study show valuable therapeutic potential of phytoconstituents present in IS.CR to correct the neurological disarrays which might be through antioxidant activity or via modulation of GABAergic and cholinergic systems by artocommunol, 1,9-dideoxyforskolin and 6E,9E-octadecadienoic acid.

6.
Chem Biol Drug Des ; 98(3): 377-394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34132061

RESUMO

During neuronal diseases, neuronal proteins get disturbed due to changes in the connections of neurons. As a result, neuronal proteins get disturbed and cause epilepsy. At the genetic level, many mutations may take place in proteins like axon guidance proteins, leucine-rich glioma inactivated 1 protein, microtubular protein, pore-forming, chromatin remodeling, and chemokine proteins which may lead toward temporal lobe epilepsy. These proteins can be targeted in the future for the treatment purpose of epilepsy. Novel avenues can be developed for therapeutic interventions by these new insights.


Assuntos
Epilepsia do Lobo Temporal/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Filaminas/metabolismo , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo
7.
Medicina (Kaunas) ; 56(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210162

RESUMO

Background and Objectives: Ficus benghalensis (FB) is a commonly found tree in Pakistan and its various parts have folkloric importance in managing neurological ailments. In the present study, methanolic extract of its bark has been tested on an experimental animal model to evaluate memory-enhancing, anxiolytic and antidepressant activities to validate the claimed therapeutic potential. Materials and Methods: Methanolic extract of freshly isolated bark was prepared and subjected to preliminary phytochemical studies and gas chromatography-mass spectrometry (GC-MS) analysis for the presence of phytocomponents. To evaluate its effect on spatial learning, passive-avoidance test-step through (PAT-ST), Y-maze and Morris water maze (MWM) tests were carried out. Open-field (OFT) and elevated plus maze (EPM) tests were employed to explore the anti-anxiety potential of FB while a forced swimming test (FST) was utilized to assess its anti-depressant prospective. FB doses of 100, 200 and 300 mg/kg with positive and negative controls given to Sprague Dawley (SD) rats. Results: phytochemical studies showed the presence of various phytoconstituents including alkaloids, flavonoids, terpenes, phenolics and anthraquinones. The presence of synephrine, aspargine, glucose, fructose and fatty acids was revealed by GC-MS analysis. FB administration led to significant improved memory retention when evaluated through passive avoidance (p < 0.05), Y-maze (p < 0.05) and Morris water maze (p < 0.05) tests in a scopolamine model of amnesic rats. When tested by open field and elevated plus maze tests, FB demonstrated anxiety-resolving characteristics (p < 0.05) as animals dared to stay in open areas more than a control group. Mobility time was increased and immobility time was reduced (p < 0.05-0.01) in rats treated with FB, unveiling the anti-depressant importance of F. benghalensis. Conclusion: methanolic extract of F. benghalensis bark furnished scientific proof behind folkloric claims of the memory improving, anxiety-reducing and depression-resolving characteristics of the plant. These activities might be possible due to interaction of its phytoconstituents with serotonergic, glutamatergic, cholinergic and GABAergic systems in the brain.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ficus , Memória/efeitos dos fármacos , Extratos Vegetais/farmacologia , Amnésia/prevenção & controle , Animais , Modelos Animais de Doenças , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Teóricos , Ratos , Ratos Sprague-Dawley , Escopolamina , Aprendizagem Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...