Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 99: 940-950, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889768

RESUMO

This study characterized the static and fatigue compressive properties of a new hybrid composite material made of synthetic and natural fibers with an epoxy matrix. The glass/flax/epoxy composite material was manufactured as a "sandwich structure" with a Type A configuration (i.e. [0G2/0F12/0G2] using unidirectional glass (G) and flax (F) fibers) and Type B configuration (i.e. [0G2/±45F12/0G2] using unidirectional glass (G) and ±45° oblique flax (F) fibers). Digital image correlation was used to obtain the static properties of compressive elastic modulus (Type A, 24.4 GPa; Type B, 14.7 GPa), ultimate compressive strength (Type A, 261.7 MPa; Type B, 231.9 MPa), and Poisson's ratio (Type A, 0.37; Type B, 0.58). Thermographic stress analysis was used to measure a high cycle fatigue strength (HCFS) of 53% (Type A and B) of ultimate compressive strength. Conventional experimental fatigue methods (i.e. stress vs. number of cycles to failure) yielded a HCFS of 56-61% (Type A) and 51-56% (Type B), as well as almost constant dynamic compressive moduli of 15 GPa (Type A) and 10 GPa (Type B) over the entire loading regime. This new composite material may have various potential applications, such as aerospace, automotive, biomechanics, sports, etc., based on the compressive properties measured.


Assuntos
Resinas Epóxi/química , Linho/química , Vidro/química , Processamento de Imagem Assistida por Computador , Teste de Materiais/métodos , Fenômenos Mecânicos , Estresse Mecânico , Termografia , Força Compressiva , Temperatura
2.
J Mech Behav Biomed Mater ; 65: 306-316, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27618754

RESUMO

The purpose of this study is to investigate the mechanical feasibility of a hybrid Glass/Flax/Epoxy composite material for bone fracture fixation such as fracture plates. These hybrid composite plates have a sandwich structure in which the outer layers are made of Glass/Epoxy and the core from Flax/Epoxy. This configuration resulted in a unique structure compared to prior composites proposed for similar clinical applications. In order to evaluate the mechanical properties of this hybrid composite, uniaxial tension, compression, three-point bending and Rockwell Hardness tests were conducted. In addition, water absorption tests were performed to investigate the rate of water absorption for the specimens. This study confirms that the proposed hybrid composite plates are significantly more flexible axially compared to conventional metallic plates. Furthermore, they have considerably higher ultimate strength in tension, compression and flexion. Such high strength will ensure good stability of bone-implant construct at the fracture site, immobilize adjacent bone fragments and carry clinical-type forces experienced during daily normal activities. Moreover, this sandwich structure with stronger and stiffer face sheets and more flexible core can result in a higher stiffness and strength in bending compared to tension and compression. These qualities make the proposed hybrid composite an ideal candidate for the design of an optimized fracture fixation system with much closer mechanical properties to human cortical bone.


Assuntos
Placas Ósseas , Fixação de Fratura , Fraturas Ósseas/terapia , Falha de Prótese , Resinas Epóxi , Humanos , Teste de Materiais
3.
J Mech Behav Biomed Mater ; 56: 87-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26703226

RESUMO

Intramedullary nails are the golden treatment option for diaphyseal fractures. However, their high stiffness can shield the surrounding bone from the natural physiologic load resulting in subsequent bone loss. Their stiff structure can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. Composite intramedullary nails have recently been introduced to address these drawbacks. The purpose of this study is to evaluate the mechanical properties of a previously developed composite IM nail made of carbon-fibre/epoxy whose structure was optimized based on fracture healing requirements using the selective stress shielding approach. Following manufacturing, the cross-section of the composite nail was examined under an optical microscope to find the porosity of the structure. Mechanical properties of the proposed composite intramedullary nail were determined using standard tension, compression, bending, and torsion tests. The failed specimens were then examined to obtain the modes of failure. The material showed high strength in tension (403.9±7.8MPa), compression (316.9±10.9MPa), bending (405.3±8.1MPa), and torsion (328.5±7.3MPa). Comparing the flexural modulus (41.1±0.9GPa) with the compressive modulus (10.0±0.2GPa) yielded that the material was significantly more flexible in compression than in bending. This customized flexibility along with the high torsional stiffness of the nail (70.7±2.0Nm(2)) has made it ideal as a fracture fixation device since this unique structure can stabilize the fracture while allowing for compression of fracture ends. Negligible moisture absorption (~0.5%) and low porosity of the laminate structure (< 3%) are other advantages of the proposed structure. The findings suggested that the carbon-fibre/epoxy intramedullary nail is flexible axially while being relatively rigid in bending and torsion and is strong enough in all types of physiologic loading, making it a potential candidate for use as an alternative to the conventional titanium-alloy intramedullary nails.


Assuntos
Materiais Biocompatíveis/química , Carbono/química , Compostos de Epóxi/química , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas , Teste de Materiais , Fenômenos Mecânicos , Fenômenos Biomecânicos , Fibra de Carbono , Propriedades de Superfície
4.
J Biomech Eng ; 137(12): 121001, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458035

RESUMO

The high stiffness of conventional intramedullary (IM) nails may result in stress shielding and subsequent bone loss following healing in long bone fractures. It can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. This paper introduces a new approach for the optimization of a fiber-reinforced composite nail made of carbon fiber (CF)/epoxy based on a combination of the classical laminate theory, beam theory, finite-element (FE) method, and bone remodeling model using irreversible thermodynamics. The optimization began by altering the composite stacking sequence and thickness to minimize axial stiffness, while maximizing torsional stiffness for a given range of bending stiffnesses. The selected candidates for the seven intervals of bending stiffness were then examined in an experimentally validated FE model to evaluate their mechanical performance in transverse and oblique femoral shaft fractures. It was found that the composite nail having an axial stiffness of 3.70 MN and bending and torsional stiffnesses of 70.3 and 70.9 N⋅m², respectively, showed an overall superiority compared to the other configurations. It increased compression at the fracture site by 344.9 N (31%) on average, while maintaining fracture stability through an average increase of only 0.6 mm (49%) in fracture shear movement in transverse and oblique fractures when compared to a conventional titanium-alloy nail. The long-term results obtained from the bone remodeling model suggest that the proposed composite IM nail reduces bone loss in the femoral shaft from 7.9% to 3.5% when compared to a conventional titanium-alloy nail. This study proposes a number of practical guidelines for the design of composite IM nails.


Assuntos
Pinos Ortopédicos , Carbono/química , Fraturas do Fêmur/fisiopatologia , Fraturas do Fêmur/terapia , Consolidação da Fratura/fisiologia , Modelos Biológicos , Fibra de Carbono , Força Compressiva , Simulação por Computador , Desenho Assistido por Computador , Módulo de Elasticidade , Análise de Falha de Equipamento , Fixação Intramedular de Fraturas/instrumentação , Fixação Intramedular de Fraturas/métodos , Humanos , Desenho de Prótese , Estresse Mecânico , Resistência à Tração , Resultado do Tratamento
5.
J Mech Behav Biomed Mater ; 42: 138-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25482217

RESUMO

Bone fracture plates are used to stabilize fractures while allowing for adequate compressive force on the fracture ends. Yet the high stiffness of conventional bone plates significantly reduces compression at the fracture site, and can lead to subsequent bone loss upon healing. Fibre-reinforced composite bone plates have been introduced to address this drawback. However, no studies have optimized their configurations to fulfill the requirements of proper healing. In the present study, classical laminate theory and the finite element method were employed for optimization of a composite bone plate. A hybrid composite made of carbon fibre/epoxy with a flax/epoxy core, which was introduced previously, was optimized by varying the laminate stacking sequence and the contribution of each material, in order to minimize the axial stiffness and maximize the torsional stiffness for a given range of bending stiffness. The initial 14×4(14) possible configurations were reduced to 13 after applying various design criteria. A comprehensive finite element model, validated against a previous experimental study, was used to evaluate the mechanical performance of each composite configuration in terms of its fracture stability, load sharing, and strength in transverse and oblique Vancouver B1 fracture configurations at immediately post-operative, post-operative, and healed bone stages. It was found that a carbon fibre/epoxy plate with an axial stiffness of 4.6 MN, and bending and torsional stiffness of 13 and 14 N·m(2), respectively, showed an overall superiority compared with other laminate configurations. It increased the compressive force at the fracture site up to 14% when compared to a conventional metallic plate, and maintained fracture stability by ensuring the fracture fragments' relative motions were comparable to those found during metallic plate fixation. The healed stage results revealed that implantation of the titanium plate caused a 40.3% reduction in bone stiffness, while the composite plate lowered the stiffness by 32.9% as compared to the intact femur. This study proposed a number of guidelines for the design of composite bone plates. The findings suggest that a composite bone plate could be customized to allow for moderate compressive force on the fracture ends, while remaining relatively rigid in bending and torsion and strong enough to withstand external loads when a fracture gap is present. The results indicate that the proposed composite bone plate could be a potential candidate for bone fracture plate applications.


Assuntos
Placas Ósseas , Desenho de Prótese/métodos , Estresse Mecânico , Carbono/química , Fibra de Carbono , Compostos de Epóxi/química , Fraturas do Fêmur/fisiopatologia , Fraturas do Fêmur/cirurgia , Fêmur/lesões , Fêmur/fisiopatologia , Análise de Elementos Finitos , Humanos , Teste de Materiais , Período Pós-Operatório , Cicatrização
6.
Clin Biomech (Bristol, Avon) ; 29(7): 803-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24951320

RESUMO

BACKGROUND: Intramedullary nails are the primary choice for treating long bone fractures. However, complications following nail surgery including non-union, delayed union, and fracture of the bone or the implant still exist. Reducing nail stiffness while still maintaining sufficient stability seems to be the ideal solution to overcome the abovementioned complications. METHODS: In this study, a new hybrid concept for nails made of carbon fibers/flax/epoxy was developed in order to reduce stress shielding. The mechanical performance of this new implant in terms of fracture stability and load sharing was assessed using a comprehensive non-linear FE model. This model considers several mechanical factors in nine fracture configurations at immediately post-operative, and in the healed bone stages. RESULTS: Post-operative results showed that the hybrid composite nail increases the average normal force at the fracture site by 319.23N (P<0.05), and the mean stress in the vicinity of fracture by 2.11MPa (P<0.05) at 45% gait cycle, while only 0.33mm and 0.39mm (P<0.05) increases in the fracture opening and the fragments' shear movement were observed. The healed bone results revealed that implantation of the titanium nail caused 20.2% reduction in bone stiffness, while the composite nail lowered the stiffness by 11.8% as compared to an intact femur. INTERPRETATION: Our results suggest that the composite nail can provide a preferred mechanical environment for healing, particularly in transverse shaft fractures. This may help bioengineers better understand the biomechanics of fracture healing, and aid in the design of effective implants.


Assuntos
Pinos Ortopédicos , Osso e Ossos/cirurgia , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Titânio/química , Fenômenos Biomecânicos , Desenho Assistido por Computador , Elasticidade , Fêmur/fisiopatologia , Fêmur/cirurgia , Análise de Elementos Finitos , Consolidação da Fratura , Marcha , Humanos , Fixadores Internos , Período Pós-Operatório , Pressão , Resistência ao Cisalhamento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...