Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059411

RESUMO

Waste collection has become a major issue all over the world, especially when it is offered as a service for businesses; unlike public waste collection where the parameters are relatively homogeneous. This industry can greatly benefit from new sensing technologies and advances in artificial intelligence that have been achieved over the last few years. However, in most situations waste management systems are based on obsolete technologies, with a low level of interoperability and thus offering static processes. The most advanced solutions are generally limited to statistical, non-predictive approaches and have a limited view of reality, making them weakly effective in dealing with day-to-day business issues (overflowing containers, poor quality of service, etc.). This paper presents a case study currently being developed in Luxembourg with a company offering a business waste collection service, which has a significant amount of constraints to consider. Our main objective is to investigate the use of multiple waste data sources to derive useful indicators for improving collection processes. We start with company-owned historical data and then investigate GPS information from tracking devices positioned on collection trucks. Furthermore, we analyze data collected from ultrasonic sensors deployed on almost 50 different containers to measure fill levels. We describe the deployment steps and show that this approach, combined with anomaly detection and prediction techniques, has the potential to change the way this business operates. We also discuss the interest of the different datasets presented and multi-objective optimization issues. To the best of our knowledge, this article is the first major work dedicated to the world of professional waste collection.

2.
Nat Plants ; 4(7): 440-452, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915331

RESUMO

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Assuntos
Genoma de Planta/genética , Quercus/genética , Evolução Biológica , DNA de Plantas/genética , Variação Genética/genética , Longevidade/genética , Mutação , Filogenia , Análise de Sequência de DNA
3.
Gigascience ; 6(2): 1-13, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369459

RESUMO

BACKGROUND: Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. RESULTS: Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. CONCLUSION: Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology.


Assuntos
Biologia Computacional/métodos , Genoma Fúngico , Genômica , Leveduras/genética , Cromossomos Fúngicos , Elementos de DNA Transponíveis , DNA Fúngico , Dosagem de Genes , Genoma Mitocondrial , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...