Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 45(10): 4660-4666, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30133706

RESUMO

PURPOSE: Fixed beam radiotherapy systems utilize couch movement and rotation instead of gantry rotation in order to simplify linear accelerator design. We investigate the ability to deliver fixed beam treatments with the same level of clinical accuracy as conventional (rotating beam) treatments using real-time image guidance to maintain this accuracy in the presence of rigid target motion. METHODS: A prototype fixed beam radiotherapy system was built using a standard linac with the beam fixed in the vertical position and a computer controlled rotation stage that rotated a rigid phantom about the superior-inferior axis. Kilovoltage Intrafraction Monitoring (KIM) and real-time beam adaptation with MLC tracking was applied to a five-field IMRT treatment plan with motion introduced to the phantom. The same IMRT treatment was also delivered with real-time adaptation using the conventional rotating beam geometry. Film dosimetry was used to measure the dose delivered with a fixed beam compared to a rotating beam, as well as to compare treatments delivered with and without real-time adaptation. RESULTS: The dose distributions were found to be equivalent between the fixed beam and rotating beam geometry for real-time adaptive radiotherapy using KIM and MLC tracking beam adaptation. Gamma analysis on the films showed agreement >98% using a 2%/2 mm criteria with adaptation for static shifts and periodic motion. CONCLUSIONS: Fixed beam treatments with real-time beam adaptation are dosimetrically equivalent to conventional treatments with a rotating beam, even in the presence of rigid target motion. This suggests that, for a rigid target, the high clinical accuracy of real-time adaptive radiotherapy can be achieved with simpler beam geometry.


Assuntos
Radioterapia Guiada por Imagem/instrumentação , Rotação , Artefatos , Imagens de Fantasmas , Radiometria , Fatores de Tempo
2.
Clin Oncol (R Coll Radiol) ; 29(2): 120-128, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27913106

RESUMO

Many low- and middle-income countries, together with remote and low socioeconomic populations within high-income countries, lack the resources and services to deal with cancer. The challenges in upgrading or introducing the necessary services are enormous, from screening and diagnosis to radiotherapy planning/treatment and quality assurance. There are severe shortages not only in equipment, but also in the capacity to train, recruit and retain staff as well as in their ongoing professional development via effective international peer-review and collaboration. Here we describe some examples of emerging technology innovations based on real-time software and cloud-based capabilities that have the potential to redress some of these areas. These include: (i) automatic treatment planning to reduce physics staffing shortages, (ii) real-time image-guided adaptive radiotherapy technologies, (iii) fixed-beam radiotherapy treatment units that use patient (rather than gantry) rotation to reduce infrastructure costs and staff-to-patient ratios, (iv) cloud-based infrastructure programmes to facilitate international collaboration and quality assurance and (v) high dose rate mobile cobalt brachytherapy techniques for intraoperative radiotherapy.


Assuntos
Neoplasias/radioterapia , Radioterapia (Especialidade)/tendências , Radioterapia/tendências , Humanos , Radioterapia (Especialidade)/métodos , Radioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...