Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cell Sci ; 137(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38904097

RESUMO

PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.


Assuntos
Transição Epitelial-Mesenquimal , Humanos , Animais , Camundongos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Transdução de Sinais , Adesão Celular/genética , Movimento Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Colite/patologia , Colite/metabolismo , Colite/genética , Colite/induzido quimicamente , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Intestinos/patologia
2.
Methods Mol Biol ; 2475: 113-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451752

RESUMO

The endothelial response to vascular endothelial growth factor A (VEGF-A) regulates many aspects of animal physiology in health and disease. Such VEGF-A-regulated phenomena include vasculogenesis, angiogenesis, tumor growth and progression. VEGF-A binding to receptor tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2 ) activates multiple signal transduction pathways and changes in homeostasis, metabolism, gene expression, cell proliferation, migration, and survival. One such VEGF-A-regulated response is a rapid rise in cytosolic calcium ion levels which modulates different biochemical events and impacts on endothelial-specific responses. Here, we present a series of detailed and robust protocols for evaluating ligand-stimulated cytosolic calcium ion flux in endothelial cells. By monitoring an endogenous endothelial transcription factor (NFATc2 ) which displays calcium-sensitive redistribution, we can assess the relevance of cytosolic calcium to protein function. This protocol can be easily applied to both adherent and non-adherent cultured cells to evaluate calcium ion flux in response to exogenous stimuli such as VEGF-A.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Nat Commun ; 11(1): 3219, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591542

RESUMO

The receptor-linked protein tyrosine phosphatases (RPTPs) are key regulators of cell-cell communication through the control of cellular phosphotyrosine levels. Most human RPTPs possess an extracellular receptor domain and tandem intracellular phosphatase domains: comprising an active membrane proximal (D1) domain and an inactive distal (D2) pseudophosphatase domain. Here we demonstrate that PTPRU is unique amongst the RPTPs in possessing two pseudophosphatase domains. The PTPRU-D1 displays no detectable catalytic activity against a range of phosphorylated substrates and we show that this is due to multiple structural rearrangements that destabilise the active site pocket and block the catalytic cysteine. Upon oxidation, this cysteine forms an intramolecular disulphide bond with a vicinal "backdoor" cysteine, a process thought to reversibly inactivate related phosphatases. Importantly, despite the absence of catalytic activity, PTPRU binds substrates of related phosphatases strongly suggesting that this pseudophosphatase functions in tyrosine phosphorylation by competing with active phosphatases for the binding of substrates.


Assuntos
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Linhagem Celular , Dissulfetos/metabolismo , Estabilidade Enzimática , Humanos , Modelos Moleculares , Oxirredução , Ligação Proteica , Domínios Proteicos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Especificidade por Substrato
4.
Cell Signal ; 66: 109481, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760171

RESUMO

Cells respond to soluble and membrane-bound factors to activate signalling cascades that control cell proliferation and cell death. Vascular endothelial growth factor A (VEGF-A) is a soluble ligand that modulates a variety of cellular responses including cell proliferation and apoptosis. It is not well understood how VEGF-A signalling pathways regulate cell proliferation and cell death. To address this, we examined VEGF-A-regulated signalling pathways in the cytosol and nucleus and functional requirement for such cellular responses. The VEGF-A-regulated transcription factor, ATF-2, is required for cell cycle proteins such as p53, p21 and Cyclin D1. A cytosolic serine/threonine protein kinase (Tpl2) modulates ATF-2-regulated effects on the endothelial cell cycle. Such regulatory effects impact on endothelial cell proliferation, cell viability and apoptosis. These cellular effects influence complex cell-based organisation such as endothelial tubulogenesis. Our study now provides a framework for incorporating VEGF-A-stimulated signalling events from the cytosol to the nucleus which helps to understand how cell proliferation and apoptosis are controlled.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Apoptose , Ciclo Celular , Células Endoteliais da Veia Umbilical Humana/citologia , MAP Quinase Quinase Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Proliferação de Células , Humanos , Transdução de Sinais
5.
Biol Open ; 8(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31072823

RESUMO

New blood vessel sprouting (angiogenesis) and vascular physiology are fundamental features of metazoan species but we do not fully understand how signal transduction pathways regulate diverse vascular responses. The vascular endothelial growth factor (VEGF) family bind membrane-bound receptor tyrosine kinases (VEGFRs), which trigger multiple signal transduction pathways and diverse cellular responses. We evaluated whether the MAP3K family member and proto-oncoprotein Tpl2 (MAP3K8) regulates basal and VEGF-A-stimulated signal transduction in endothelial cells. Notably, stimulation with exogenous VEGF-A increased Tpl2 mRNA levels and consequently de novo protein synthesis. Depletion of Tpl2 levels reveals a role in both basal and VEGF-A-stimulated endothelial cell responses, including endothelial-leukocyte interactions, monolayer permeability and new blood vessel formation. Under basal conditions, Tpl2 modulates a signal transduction cascade resulting in phosphorylation of a nuclear transcription factor (ATF-2) and altered endothelial gene expression, a pathway previously identified as crucial in VEGF-dependent vascular responses. Loss of Tpl2 expression or activity impairs signal transduction through Akt, eNOS and ATF-2, broadly impacting on endothelial function. Our study now provides a mechanism for Tpl2 as a central component of signal transduction pathways in the endothelium.

6.
Elife ; 82019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30924770

RESUMO

Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cateninas/metabolismo , Adesão Celular , Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/enzimologia , Proteínas dos Microfilamentos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Linhagem Celular , Células Epiteliais/fisiologia , Humanos , Fosforilação , delta Catenina
7.
Front Immunol ; 9: 200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535706

RESUMO

The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα) and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.


Assuntos
Indutores da Angiogênese , Células Endoteliais/imunologia , Interleucina-1/farmacologia , Interleucina-23/imunologia , Psoríase/imunologia , Pele/imunologia , Humanos , Inflamação , Interleucina-17/imunologia , Queratinócitos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Neovascularização Patológica , Psoríase/patologia , Pele/patologia , Fator de Necrose Tumoral alfa/imunologia
8.
Biol Open ; 6(10): 1404-1415, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28798148

RESUMO

Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

9.
Biol Open ; 5(5): 571-83, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044325

RESUMO

Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

10.
Traffic ; 17(1): 53-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459808

RESUMO

Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular function. VEGF-A binding to vascular endothelial growth factor receptor 2 (VEGFR2) stimulates endothelial signal transduction and regulates multiple cellular responses. Activated VEGFR2 undergoes ubiquitination but the enzymes that regulate this post-translational modification are unclear. In this study, the de-ubiquitinating enzyme, USP8, is shown to regulate VEGFR2 trafficking, de-ubiquitination, proteolysis and signal transduction. USP8-depleted endothelial cells displayed altered VEGFR2 ubiquitination and production of a unique VEGFR2 extracellular domain proteolytic fragment caused by VEGFR2 accumulation in the endosome-lysosome system. In addition, perturbed VEGFR2 trafficking impaired VEGF-A-stimulated signal transduction in USP8-depleted cells. Thus, regulation of VEGFR2 ubiquitination and de-ubiquitination has important consequences for the endothelial cell response and vascular physiology.


Assuntos
Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transporte Proteico , Ubiquitinação
11.
Methods Mol Biol ; 1332: 49-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26285745

RESUMO

Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.


Assuntos
Células Endoteliais/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Western Blotting/métodos , Densitometria/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos
12.
Biosci Rep ; 35(5)2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26285805

RESUMO

VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments.


Assuntos
Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Descoberta de Drogas , Humanos , Modelos Moleculares , Transporte Proteico , Proteólise , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Crescimento do Endotélio Vascular/química
13.
Biol Open ; 4(6): 731-42, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25910937

RESUMO

Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

14.
J Inherit Metab Dis ; 38(4): 753-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25868665

RESUMO

Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.


Assuntos
Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Doença , Saúde , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Transdução de Sinais , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
15.
PLoS One ; 9(11): e110997, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393739

RESUMO

BACKGROUND: Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues. METHODOLOGY: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis. CONCLUSIONS: We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.


Assuntos
Inibidores da Angiogênese/farmacologia , Compostos de Anilina/farmacologia , Proteína Quinase CDC2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
16.
Mol Biol Cell ; 25(16): 2509-21, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24966171

RESUMO

Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Leucócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 2 Ativador da Transcrição/genética , Movimento Celular , Proliferação de Células , Expressão Gênica , Humanos , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Methods Enzymol ; 535: 265-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24377929

RESUMO

The vascular endothelial growth factor A (VEGF-A) is a multifunctional cytokine that stimulates blood vessel sprouting, vascular repair, and regeneration. VEGF-A binds to VEGF receptor tyrosine kinases (VEGFRs) and stimulates intracellular signaling leading to changes in vascular physiology. An important aspect of this phenomenon is the spatiotemporal coordination of VEGFR trafficking and intracellular signaling to ensure that VEGFR residence in different organelles is linked to downstream cellular outputs. Here, we describe a series of assays to evaluate the effects of VEGF-A-stimulated intracellular signaling from intracellular compartments such as the endosome-lysosome system. These assays include the initial isolation and characterization of primary human endothelial cells, performing reverse genetics for analyzing protein function; methods used to study receptor trafficking, signaling, and proteolysis; and assays used to measure changes in cell migration, proliferation, and tubulogenesis. Each of these assays has been exemplified with studies performed in our laboratories. In conclusion, we describe necessary techniques for studying the role of VEGF-A in endothelial cell function.


Assuntos
Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/fisiologia , Fenômenos Fisiológicos Celulares , Separação Celular , Células Cultivadas , Citometria de Fluxo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Microscopia de Fluorescência , Cultura Primária de Células , Transporte Proteico , Proteólise , Interferência de RNA , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Genética Reversa , Cordão Umbilical/citologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...