Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677679

RESUMO

Propolis is a resin that is gathered by bees from exudates produced by various plants. Its exact chemical composition depends on the plants available near the hive. Bees use propolis to coat the surfaces of the hive, where it acts as an anti-infective. Regardless of the chemical composition of propolis, it is always anti-protozoal, probably because protozoan parasites, particularly Lotmarium passim, are widespread in bee populations. The protozoa Trypanosoma brucei and T. congolense cause disease in humans and/or animals. The existing drugs for treating these diseases are old and resistance is an increasingly severe problem. The many types of propolis present a rich source of anti-trypanosomal compounds-from a material gathered by bees in an environmentally friendly way. In the current work, red Nigerian propolis from Rivers State, Nigeria was tested against T. brucei and T. congolense and found to be highly active (EC50 1.66 and 4.00 µg/mL, respectively). Four isoflavonoids, vestitol, neovestitol, 7-methylvestitol and medicarpin, were isolated from the propolis. The isolated compounds were also tested against T. brucei and T. congolense, and vestitol displayed the highest activity at 3.86 and 4.36 µg/mL, respectively. Activities against drug-resistant forms of T. brucei and T. congolense were similar to those against wild type.


Assuntos
Anti-Infecciosos , Própole , Trypanosoma brucei brucei , Trypanosoma congolense , Tripanossomíase Africana , Humanos , Animais , Própole/farmacologia , Própole/química , Nigéria , Tripanossomíase Africana/tratamento farmacológico
2.
Front Pharmacol ; 13: 930515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754488

RESUMO

Propolis is a resinous product collected by bees from plant exudates to protect and maintain hive homeostasis. Propolis has been used therapeutically for centuries as folk medicine. Modern research investigating the diversity of the chemical composition and plant sources, biological activity, extraction processes, analytical methods, and therapeutic properties in clinical settings have been carried out extensively since the 1980s. Due to its antimicrobial, anti-inflammatory, and immuno-modulator properties, propolis appears to be a suitable bioactive component to be incorporated into biomaterials. This review article attempts to analyze the potential application of propolis as a biomaterial component from the available experimental evidence. The efficacy and compabitility of propolis depend upon factors, such as types of extracts and types of biomaterials. Generally, propolis appears to be compatible with hydroxyapatite/calcium phosphate-based biomaterials. Propolis enhances the antimicrobial properties of the resulting composite materials while improving the physicochemical properties. Furthermore, propolis is also compatible with wound/skin dressing biomaterials. Propolis improves the wound healing properties of the biomaterials with no negative effects on the physicochemical properties of the composite biomaterials. However, the effect of propolis on the glass-based biomaterials cannot be generalized. Depending on the concentration, types of extract, and geographical sources of the propolis, the effect on the glass biomaterials can either be an improvement or detrimental in terms of mechanical properties such as compressive strength and shear bond strength. In conclusion, two of the more consistent impacts of propolis across these different types of biomaterials are the enhancement of the antimicrobial and the immune-modulator/anti-inflammatory properties resulting from the combination of propolis and the biomaterials.

3.
Molecules ; 27(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268726

RESUMO

Profiling a propolis sample from Papua New Guinea (PNG) using high-resolution mass spectrometry indicated that it contained several triterpenoids. Further fractionation by column chromatography and medium-pressure liquid chromatography (MPLC) followed by nuclear magnetic resonance spectroscopy (NMR) identified 12 triterpenoids. Five of these were obtained pure and the others as mixtures of two or three compounds. The compounds identified were: mangiferonic acid, ambonic acid, isomangiferolic acid, ambolic acid, 27-hydroxyisomangiferolic acid, cycloartenol, cycloeucalenol, 24-methylenecycloartenol, 20-hydroxybetulin, betulin, betulinic acid and madecassic acid. The fractions from the propolis and the purified compounds were tested in vitro against Crithidia fasciculata, Trypanosoma congolense, drug-resistant Trypanosoma congolense, Trypanosoma b. brucei and multidrug-resistant Trypanosoma b. brucei (B48). They were also assayed for their toxicity against U947 cells. The compounds and fractions displayed moderate to high activity against parasitic protozoa but only low cytotoxicity against the mammalian cells. The most active isolated compound, 20-hydroxybetulin, was found to be trypanostatic when different concentrations were tested against T. b. brucei growth.


Assuntos
Própole
4.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361742

RESUMO

The biological activities of propolis samples are the result of many bioactive compounds present in the propolis. The aim of the present study was to determine the various chemical compounds of some selected propolis samples collected from Palestine and Morocco by the High-Performance Liquid Chromatography-Photodiode Array Detection (HPLC-PDA) method, as well as the antioxidant and antibacterial activities of this bee product. The chemical analysis of propolis samples by HPLC-PDA shows the cinnamic acid content in the Palestinian sample is higher compared to that in Moroccan propolis. The results of antioxidant activity demonstrated an important free radical scavenging activity (2,2-Diphenyl-1-picrylhydrazyl (DPPH); 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and reducing power assays) with EC50 values ranging between 0.02 ± 0.001 and 0.14 ± 0.01 mg/mL. Additionally, all tested propolis samples possessed a moderate antibacterial activity against bacterial strains. Notably, Minimum Inhibitory Concentrations (MICs) values ranged from 0.31 to 2.50 mg/mL for Gram-negative bacterial strains and from 0.09 to 0.125 mg/mL for Gram-positive bacterial strains. The S2 sample from Morocco and the S4 sample from Palestine had the highest content of polyphenol level. Thus, the strong antioxidant and antibacterial properties were apparently due to the high total phenolic and flavone/flavonol contents in the samples. As a conclusion, the activities of propolis samples collected from both countries are similar, while the cinnamic acid in the Palestinian samples was more than that of the Moroccan samples.


Assuntos
Antibacterianos/química , Antioxidantes/química , Cinamatos/química , Fenóis/química , Própole/química , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Abelhas/fisiologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oriente Médio , Marrocos , Fenóis/isolamento & purificação , Fenóis/farmacologia , Picratos/antagonistas & inibidores , Polifenóis , Análise de Componente Principal , Própole/isolamento & purificação , Ácidos Sulfônicos/antagonistas & inibidores
5.
Molecules ; 26(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443664

RESUMO

Propolis is a resinous natural product collected by honeybees (Apis mellifera and others) from tree exudates that has been widely used in folk medicine. The present study was carried out to investigate the fatty acid composition, chemical constituents, antioxidant, and xanthine oxidase (XO) inhibitory activity of Jordanian propolis, collected from Al-Ghour, Jordan. The hexane extract of Jordanian propolis contained different fatty acids, which are reported for the first time by using GC-FID. The HPLC was carried out to identify important chemical constituents such as fatty acids, polyphenols and α-tocopherol. The antioxidant and xanthine oxidase inhibitory activities were also monitored. The major fatty acid identified were palmitic acid (44.6%), oleic acid (18:1∆9cis, 24.6%), arachidic acid (7.4%), stearic acid (5.4%), linoleic acid (18:2∆9-12cis, 3.1%), caprylic acid (2.9%), lignoceric acid (2.6%), cis-11,14-eicosaldienoic acid (20:2∆11-14cis, 2.4%), palmitoleic acid (1.5%), cis-11-eicosenoic acid (1.2%), α-linolenic acid (18:3∆9-12-15cis, 1.1%), cis-13,16-docosadienoic acid (22:2∆13-16cis, 1.0%), along with other fatty acids. The major chemical constituents identified using gradient HPLC-PDA analysis were pinocembrin (2.82%), chrysin (1.83%), luteolin-7-O-glucoside (1.23%), caffeic acid (1.12%), caffeic acid phenethyl ester (CAPE, 0.79%), apigenin (0.54%), galangin (0.46%), and luteolin (0.30%); while the minor constituents were hesperidin, quercetin, rutin, and vanillic acid. The percentage of α-tocopherol was 2.01 µg/g of the lipid fraction of propolis. Antioxidant properties of the extracts were determined via DPPH radical scavenging. The DPPH radical scavenging activities (IC50) of different extracts ranged from 6.13 to 60.5 µg/mL compared to ascorbic acid (1.21 µg/mL). The xanthine oxidase inhibition (IC50) ranged from 75.11 to 250.74 µg/mL compared to allopurinol (0.38 µg/mL). The results indicate that the various flavonoids, phenolic compounds, α-tocopherol, and other constituents which are present in propolis are responsible for the antioxidant and xanthine oxidation inhibition activity. To evaluate the safety studies of propolis, the pesticide residues were also monitored by LC-MS-MS 4500 Q-Trap. Trace amounts of pesticide residue (ng/mL) were detected in the samples, which are far below the permissible limit as per international guidelines.


Assuntos
Antioxidantes/química , Ácidos Graxos/química , Resíduos de Praguicidas/química , Própole/química , Antioxidantes/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ácidos Graxos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Resíduos de Praguicidas/isolamento & purificação , Fenóis/química , Fenóis/isolamento & purificação , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/isolamento & purificação , Rutina/química
6.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206940

RESUMO

Ethanolic extracts of samples of temperate zone propolis, four from the UK and one from Poland, were tested against three Trypanosoma brucei strains and displayed EC50 values < 20 µg/mL. The extracts were fractionated, from which 12 compounds and one two-component mixture were isolated, and characterized by NMR and high-resolution mass spectrometry, as 3-acetoxypinobanksin, tectochrysin, kaempferol, pinocembrin, 4'-methoxykaempferol, galangin, chrysin, apigenin, pinostrobin, cinnamic acid, coumaric acid, cinnamyl ester/coumaric acid benzyl ester (mixture), 4',7-dimethoxykaempferol, and naringenin 4',7-dimethyl ether. The isolated compounds were tested against drug-sensitive and drug-resistant strains of T. brucei and Leishmania mexicana, with the highest activities ≤ 15 µM. The most active compounds against T. brucei were naringenin 4',7 dimethyl ether and 4'methoxy kaempferol with activity of 15-20 µM against the three T. brucei strains. The most active compounds against L. mexicana were 4',7-dimethoxykaempferol and the coumaric acid ester mixture, with EC50 values of 12.9 ± 3.7 µM and 13.1 ± 1.0 µM. No loss of activity was found with the diamidine- and arsenical-resistant or phenanthridine-resistant T. brucei strains, or the miltefosine-resistant L. mexicana strain; no clear structure activity relationship was observed for the isolated compounds. Temperate propolis yields multiple compounds with anti-kinetoplastid activity.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Própole/análise , Própole/farmacologia , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Cinamatos/química , Flavanonas/química , Flavonoides/química , Quempferóis/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Polônia , Própole/química , Reino Unido
7.
Foods ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208334

RESUMO

Propolis is a complex phytocompound made from resinous and balsamic material harvested by bees from flowers, branches, pollen, and tree exudates. Humans have used propolis therapeutically for centuries. The aim of this article is to provide comprehensive review of the antiviral, antibacterial, antifungal, and antiparasitic properties of propolis. The mechanisms of action of propolis are discussed. There are two distinct impacts with regards to antimicrobial and anti-parasitic properties of propolis, on the pathogens and on the host. With regards to the pathogens, propolis acts by disrupting the ability of the pathogens to invade the host cells by forming a physical barrier and inhibiting enzymes and proteins needed for invasion into the host cells. Propolis also inhibits the replication process of the pathogens. Moreover, propolis inhibits the metabolic processes of the pathogens by disrupting cellular organelles and components responsible for energy production. With regard to the host, propolis functions as an immunomodulator. It upregulates the innate immunity and modulates the inflammatory signaling pathways. Propolis also helps maintain the host's cellular antioxidant status. More importantly, a small number of human clinical trials have demonstrated the efficacy and the safety of propolis as an adjuvant therapy for pathogenic infections.

8.
Antioxidants (Basel) ; 10(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652692

RESUMO

Propolis is a resinous product collected by bees from plants to protect and maintain the homeostasis of their hives. Propolis has been used therapeutically by humans for centuries. This review article attempts to analyze the potential use of propolis in metabolic syndrome (MetS) and its associated chronic diseases. MetS and its chronic diseases were shown to be involved in at least seven out of the top 10 causes of death in 2019. Patients with MetS are also at a heightened risk of severe morbidity and mortality in the present COVID-19 pandemic. Propolis with its antioxidant and anti-inflammatory properties is potentially useful in ameliorating the symptoms of MetS and its associated chronic diseases. The aim of this article is to provide a comprehensive review on propolis and its therapeutic benefit in MetS and its chronic diseases, with an emphasis on in vitro and in vivo studies, as well as human clinical trials. Moreover, the molecular and biochemical mechanisms of action of propolis are also discussed. Propolis inhibits the development and manifestation of MetS and its chronic diseases by inhibiting of the expression and interaction of advanced glycation end products (AGEs) and their receptors (RAGEs), inhibiting pro-inflammatory signaling cascades, and promoting the cellular antioxidant systems.

9.
J Oral Biosci ; 63(1): 23-34, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465498

RESUMO

BACKGROUND: Propolis is a resinous product that is collected from plants by bees to cover holes and crevices in their hives. Propolis has potent antibacterial, antiviral, anti-inflammatory, wound healing, and anticancer properties. Propolis has been used therapeutically by humans for centuries, including the treatment of dental caries and mouth infections. HIGHLIGHT: This review article attempts to analyze the potential use of propolis in general dentistry and oral health management. CONCLUSION: Propolis is potentially useful in dentistry and oral health management based on available in vitro, in vivo, and ex vivo studies, as well as human clinical trials.


Assuntos
Anti-Infecciosos , Cárie Dentária , Própole , Animais , Anti-Infecciosos/uso terapêutico , Abelhas , Cárie Dentária/tratamento farmacológico , Odontologia , Saúde Bucal , Própole/uso terapêutico
10.
Int J Parasitol Drugs Drug Resist ; 14: 201-207, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160277

RESUMO

A bioassay-guided phytochemical investigation of propolis samples from Tanzania and Zambia that screened for activity against Trypanosoma brucei has led to the isolation of two novel flavanones with promising antitrypanosomal activity. The compounds were characterized based on their spectral and physical data and identified as 6-(1,1-dimethylallyl) pinocembrin and 5-hydroxy-4″,4″-dimethyl-5″-methyl-5″-H-dihydrofuranol [2″,3″,6,7] flavanone. The two compounds, together with the propolis extracts and fractions, were assayed against a standard drug-sensitive strain of T. b. brucei (s427 wild-type), multi-drug resistant-resistant T. b. brucei (B48), drug-sensitive T. congolense (1L300) and a derived diminazene-resistant T. congolense strain (6C3), and for toxicity against U947 human cells and RAW 246.7 murine cells. Activity against T. b. brucei was higher than against T. congolense. Interestingly, the Tanzanian propolis extract was found to be more active than its fractions and purified compounds in these assays, with an IC50 of 1.20 µg/mL against T. b. brucei. The results of a cytotoxicity assay showed that the propolis extracts were less toxic than the purified compounds with mean IC50 values > 165.0 µg/mL.


Assuntos
Antiprotozoários , Própole , Tripanossomicidas , Trypanosoma , Animais , Flavanonas , Humanos , Camundongos , Trypanosoma brucei brucei
11.
Metabolites ; 10(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066666

RESUMO

Previous research has shown that propolis has immunomodulatory activity. Extracts from two UK propolis samples were assessed for their anti-inflammatory activities by investigating their ability to alter the production of the cytokines: tumour necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and IL-10 from mouse bone marrow-derived macrophages co-stimulated with lipopolysaccharide (LPS). The propolis extracts suppressed the secretion of IL-1ß and IL-6 with less effect on TNFα. In addition, propolis reduced the levels of nitric oxide formed by LPS-stimulated macrophages. Metabolomic profiling was carried out by liquid chromatography (LC) coupled with mass spectrometry (MS) on a ZIC-pHILIC column. LPS increased the levels of intermediates involved in nitric oxide biosynthesis; propolis lowered many of these. In addition, LPS produced an increase in itaconate and citrate, and propolis treatment increased itaconate still further while greatly reducing citrate levels. Moreover, LPS treatment increased levels of glutathione (GSH) and intermediates in its biosynthesis, while propolis treatment boosted these still further. In addition, propolis treatment greatly increased levels of uridine diphosphate (UDP)-sugar conjugates. Overall, the results showed that propolis extracts exert an anti-inflammatory effect by the inhibition of pro-inflammatory cytokines and by the metabolic reprogramming of LPS activity in macrophages.

12.
Sci Rep ; 9(1): 11364, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388043

RESUMO

Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components.


Assuntos
Antiprotozoários/farmacologia , Crithidia fasciculata/efeitos dos fármacos , Própole/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Animais , Antiprotozoários/uso terapêutico , Cromatografia Líquida , Infecções por Euglenozoa/tratamento farmacológico , Flavanonas/análise , Flavanonas/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Espectrometria de Massas , Própole/química , Própole/uso terapêutico
13.
Cureus ; 11(3): e4267, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-31157129

RESUMO

Aspiration of teeth is a rare, potentially fatal complication of tracheal intubation. Early diagnosis and treatment are key to preventing further complications. Interpretation of the physical examination and radiographic evidence together with a high degree of suspicion are necessary to achieve early diagnosis of foreign body aspiration. We examine one such case of a misdiagnosed tooth in lung event.

14.
Metabolites ; 9(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995826

RESUMO

Previous research has shown that propolis has immunomodulatory activity. Propolis extracts from different geographic origins were assessed for their anti-inflammatory activities by investigating their ability to alter the production of tumour necrosis factor-α (TNF-α) and the cytokines interleukin-1ß (IL-1ß), IL-6 and IL-10 in THP-1-derived macrophage cells co-stimulated with lipopolysaccharide (LPS). All the propolis extracts suppressed the TNF-α and IL-6 LPS-stimulated levels. Similar suppression effects were detected for IL-1ß, but the release of this cytokine was synergised by propolis samples from Ghana and Indonesia when compared with LPS. Overall, the Cameroonian propolis extract (P-C) was the most active and this was evaluated for its effects on the metabolic profile of unstimulated macrophages or macrophages activated by LPS. The levels of 81 polar metabolites were identified by liquid chromatography (LC) coupled with mass spectrometry (MS) on a ZIC-pHILIC column. LPS altered the energy, amino acid and nucleotide metabolism in THP-1 cells, and interpretation of the metabolic pathways showed that P-C reversed some of the effects of LPS. Overall, the results showed that propolis extracts exert an anti-inflammatory effect by inhibition of pro-inflammatory cytokines and by metabolic reprogramming of LPS activity in macrophage cells, suggesting an immunomodulatory effect.

15.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884752

RESUMO

Twelve propolis samples from different parts of Libya were investigated for their phytochemical constituents. Ethanol extracts of the samples and some purified compounds were tested against Trypanosoma brucei, Plasmodium falciparum and against two helminth species, Trichinella spiralis and Caenorhabditis elegans, showing various degrees of activity. Fourteen compounds were isolated from the propolis samples, including a novel compound Taxifolin-3-acetyl-4'-methyl ether (4), a flavanonol derivative. The crude extracts showed moderate activity against T. spiralis and C. elegans, while the purified compounds had low activity against P. falciparum. Anti-trypanosomal activity (EC50 = 0.7 µg/mL) was exhibited by a fraction containing a cardol identified as bilobol (10) and this fraction had no effect on Human Foreskin Fibroblasts (HFF), even at 2.0 mg/mL, thus demonstrating excellent selectivity. A metabolomics study was used to explore the mechanism of action of the fraction and it revealed significant disturbances in trypanosomal phospholipid metabolism, especially the formation of choline phospholipids. We conclude that a potent and highly selective new trypanocide may be present in the fraction.


Assuntos
Antiprotozoários/química , Proliferação de Células/efeitos dos fármacos , Própole/química , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/patogenicidade , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Líbia , Metabolômica , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Polifenóis/química , Polifenóis/farmacologia , Própole/farmacologia , Trichinella spiralis/efeitos dos fármacos , Trichinella spiralis/patogenicidade , Trypanosoma brucei brucei/patogenicidade
16.
Sci Rep ; 7(1): 923, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424496

RESUMO

Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b. brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b. brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS2 data, could be correlated to denticulatain isomers in the extracts.


Assuntos
Antiprotozoários/química , Própole/química , Trypanosoma brucei brucei/efeitos dos fármacos , Antiprotozoários/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nigéria , Análise de Componente Principal , Própole/farmacologia
17.
PLoS One ; 11(5): e0155355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195790

RESUMO

Extracts from twelve samples of propolis collected from different regions of Libya were tested for their activity against Trypanosoma brucei, Leishmania donovani, Plasmodium falciparum, Crithidia fasciculata and Mycobacterium marinum and the cytotoxicity of the extracts was tested against mammalian cells. All the extracts were active to some degree against all of the protozoa and the mycobacterium, exhibiting a range of EC50 values between 1.65 and 53.6 µg/ml. The toxicity against mammalian cell lines was only moderate; the most active extract against the protozoan species, P2, displayed an IC50 value of 53.2 µg/ml. The extracts were profiled by using liquid chromatography coupled to high resolution mass spectrometry. The data sets were extracted using m/z Mine and the accurate masses of the features extracted were searched against the Dictionary of Natural Products (DNP). A principal component analysis (PCA) model was constructed which, in combination with hierarchical cluster analysis (HCA), divided the samples into five groups. The outlying groups had different sets of dominant compounds in the extracts, which could be characterised by their elemental composition. Orthogonal partial least squares (OPLS) analysis was used to link the activity of each extract against the different micro-organisms to particular components in the extracts.


Assuntos
Anti-Infecciosos/química , Antiprotozoários/química , Testes de Sensibilidade Microbiana , Própole/química , Animais , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Produtos Biológicos/química , Cromatografia Líquida , Análise por Conglomerados , Crithidia fasciculata/efeitos dos fármacos , Feminino , Geografia , Humanos , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Leishmania donovani/efeitos dos fármacos , Líbia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium marinum/efeitos dos fármacos , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos , Análise de Componente Principal , Própole/farmacologia , Software , Trypanosoma brucei brucei/efeitos dos fármacos , Células U937
18.
Phytochem Anal ; 27(2): 107-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26662866

RESUMO

INTRODUCTION: A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. OBJECTIVE: To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. METHODOLOGY: Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . RESULTS: Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. CONCLUSION: Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level.


Assuntos
Própole/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Própole/química , Espectrofotometria Ultravioleta
19.
Integr Med Res ; 4(2): 94-101, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28664114

RESUMO

BACKGROUND: Propolis is a multicomponent active, complex resinous substance collected by honeybees (Apis mellifera) from a variety of plant sources. This study was designed to improve the antimicrobial efficacy of propolis by engineering a niosomal-based system for topical application. METHODS: Propolis was extracted in ethanol and screened for total polyphenol content. Propolis-loaded niosomes (PLNs) were prepared with varying concentrations of Span 60 and cholesterol. The PLNs were evaluated for physicochemical parameters, namely, vesicle size, entrapment efficiency, zeta potential, surface topography and shape, and stability, followed by screening for in vitro antimicrobial activity. The PLNs were formulated into propolis niosomal gel (PNG) using Carbopol P934 base and subjected to ex vivo skin deposition study. RESULTS: The ethanolic extract of propolis had high polyphenolic content (270 ± 9.2 mg GAE/g). The prepared PLNs showed vesicle size between 294 nm and 427 nm, and the percent entrapment in the range of 50.62-71.29% with a significant enhancement in antimicrobial activity against Staphylococcus aureus and Candida albicans. Enhanced antimicrobial activity of PLNs was attributed to the ability of niosomes to directly interact with the bacterial cell envelop thereby facilitating the diffusion of propolis constituents across the cell wall. The formulated PNG exhibited a twofold better skin deposition due to improved retention of niosomes in the skin. CONCLUSION: The findings indicate that the engineering of a niosomal-based system for propolis enhanced its antimicrobial potential through topical application.

20.
Phytother Res ; 28(12): 1756-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25044090

RESUMO

Propolis is increasingly being explored as a source of biologically active compounds. Until now, there has been no study of Libyan propolis. Two samples were collected in North East Libya and tested for their activity against Trypanosoma brucei. Extracts from both samples had quite high activity. One of the samples was fractionated and yielded a number of active fractions. Three of the active fractions contained single compounds, which were found to be 13-epitorulosal, acetyl-13-epi-cupressic acid and 13-epi-cupressic acid, which have been described before in Mediterranean propolis. Two of the compounds had a minimum inhibitory concentration value of 1.56 µg/mL against T. brucei. The active fractions were also tested against macrophages infected with Leishmania donovani, and again moderate to strong activity was observed with the compounds having IC50 values in the range 5.1-21.9 µg/mL.


Assuntos
Antiprotozoários/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Própole/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Diterpenos/química , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Líbia , Macrófagos Peritoneais/parasitologia , Masculino , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...