Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(4): 5528-5537, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121771

RESUMO

We present a time-over-threshold readout technique to count the number of activated pixels from an array of superconducting nanowire single photon detectors (SNSPDs). This technique places no additional heatload on the cryostat, and retains the intrinsic count rate of the time-tagger. We demonstrate proof-of-principle operation with respect to a four-pixel device. Furthermore, we show that, given some permissible error threshold, the number of pixels that can be reliably read out scales linearly with the intrinsic signal-to-noise ratio of the individual pixel response.

2.
Nano Lett ; 17(10): 5931-5937, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28872881

RESUMO

In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and VSi-centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.

3.
Beilstein J Nanotechnol ; 7: 1727-1735, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144522

RESUMO

In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres) in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV- on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10-100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV-) and a nuclear spin (of 15N or 13C for example) of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters - embedded in photonic structures for example - can be realized which would be vital for quantum communication and cryptography.

4.
Nat Mater ; 14(2): 164-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25437256

RESUMO

Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

5.
Rev Sci Instrum ; 85(12): 123703, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554297

RESUMO

Recent efforts to define microscopic solid-immersion-lenses (SIL) by focused ion beam milling into diamond substrates that are registered to a preselected single photon emitter are summarized. We show how we determine the position of a single emitter with at least 100 nm lateral and 500 nm axial accuracy, and how the milling procedure is optimized. The characteristics of a single emitter, a Nitrogen Vacancy (NV) center in diamond, are measured before and after producing the SIL and compared with each other. A count rate of 1.0 × 10(6) counts/s is achieved with a [111] oriented NV center.

6.
Nat Nanotechnol ; 8(7): 487-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23793305

RESUMO

Electron and nuclear spins associated with point defects in insulators are promising systems for solid-state quantum technology. The electron spin is usually used for readout and addressing, and nuclear spins are used as exquisite quantum bits and memory systems. With these systems, single-shot readout of single nuclear spins as well as entanglement, aided by the electron spin, have been shown. Although the electron spin in this example is essential for readout, it usually limits the nuclear spin coherence, leading to a quest for defects with spin-free ground states. Here, we isolate a hitherto unidentified defect in diamond and use it at room temperature to demonstrate optical spin polarization and readout with exceptionally high contrast (up to 45%), coherent manipulation of an individual excited triplet state spin, and coherent nuclear spin manipulation using the triplet electron spin as a metastable ancilla. We demonstrate nuclear magnetic resonance and Rabi oscillations of the uncoupled nuclear spin in the spin-free electronic ground state. Our study demonstrates that nuclei coupled to single metastable electron spins are useful quantum systems with long memory times, in spite of electronic relaxation processes.

7.
Nat Nanotechnol ; 7(10): 657-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941402

RESUMO

The detection of single nuclear spins would be useful for fields ranging from basic science to quantum information technology. However, although sensing based on diamond defects and other methods have shown high sensitivity, they have not been capable of detecting single nuclear spins, and defect-based techniques further require strong defect-spin coupling. Here, we present the detection and identification of single and remote (13)C nuclear spins embedded in nuclear spin baths surrounding a single electron spin of a nitrogen-vacancy centre in diamond. We are able to amplify and detect the weak magnetic field noise (∼10 nT) from a single nuclear spin located ∼3 nm from the centre using dynamical decoupling control, and achieve a detectable hyperfine coupling strength as weak as ∼300 Hz. We also confirm the quantum nature of the coupling, and measure the spin-defect distance and the vector components of the nuclear field. The technique marks a step towards imaging, detecting and controlling nuclear spins in single molecules.

8.
Beilstein J Nanotechnol ; 3: 895-908, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23365803

RESUMO

We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen-vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon-vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

9.
Science ; 329(5991): 542-4, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20595582

RESUMO

Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin's behavior. We demonstrated single-shot, projective measurement of a single nuclear spin in diamond using a quantum nondemolition measurement scheme, which allows real-time observation of an individual nuclear spin's state in a room-temperature solid. Such an ideal measurement is crucial for realization of, for example, quantum error correction protocols in a quantum register.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...