Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(2): 026001, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505955

RESUMO

We report the discovery of superconductivity at a pressure-induced magnetic quantum phase transition in the Kondo lattice system CeSb_{2}, sustained up to magnetic fields that exceed the conventional Pauli limit eightfold. Like CeRh_{2}As_{2}, CeSb_{2} is locally noncentrosymmetric around the Ce site, but the evolution of critical fields and normal state properties as CeSb_{2} is tuned through the quantum phase transition motivates a fundamentally different explanation for its resilience to applied field.

2.
Rev Sci Instrum ; 93(1): 013103, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104947

RESUMO

We present a cryogenic setup where an optical Fabry-Perot resonator is coupled to a single-mode optical fiber with coupling efficiency above 90% at mK temperatures without realignment during cooling down. The setup is prealigned at room temperature to compensate for the thermal contraction and change of the refractive index of the optical components during cooling down. The high coupling efficiency is achieved by keeping the setup rotation-symmetric around the optical axis. The majority of the setup components are made of Invar (FeNi36), which minimizes the thermal contraction. High coupling efficiency is essential in quantum optomechanical experiments.

3.
Phys Rev Lett ; 126(11): 113601, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798387

RESUMO

In multimode optomechanical systems, the mechanical modes can be coupled via the radiation pressure of the common optical mode, but the fidelity of the state transfer is limited by the optical cavity decay. Here we demonstrate stimulated Raman adiabatic passage (STIRAP) in optomechanics, where the optical mode is not populated during the coherent state transfer between the mechanical modes avoiding this decay channel. We show a state transfer of a coherent mechanical excitation between vibrational modes of a membrane in a high-finesse optical cavity with a transfer efficiency of 86%. Combined with exceptionally high mechanical quality factors, STIRAP between mechanical modes can enable generation, storage, and manipulation of long-lived mechanical quantum states, which is important for quantum information science and for the investigation of macroscopic quantum superpositions.

4.
Rev Sci Instrum ; 86(5): 053703, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026528

RESUMO

We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulation regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...