Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 278: 126504, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986309

RESUMO

Microplastics is known to be ubiquitous in aquatic environment. Quantification of microplastics in natural waters is an important problem of analytical chemistry, the solution of which is needed for the assessment of water quality and potential risks for water inhabitants and consumers. Separation methods play a key role in the correct quantification of microplastics in natural waters. In the present study the applicability of countercurrent chromatography to the continuous-flow separation and preconcentration of microplastics from water samples in rotating coiled column (RCC) using water-oil systems has been demonstrated for the first time. The effect of column rotation speed and mobile phase (water) flow rate on the retention of the stationary (oil) phase in RCC is studied. The retention parameters of 10 vegetable and 2 synthetic oils are determined. Castor, olive, rapeseed, soybean, linseed, sesame, and sunflower oils are found to be applicable to the separation of microplastics from water samples using RCC. Taking as example polyethylene microparticles of different size (40-63, 63-100, and 100-250 µm), the high recovery of microplastics (about 100 %) from aqueous phase into castor and rapeseed oils is shown. The method has been proven to be efficient for the separation of microplastics from simulated fresh and sea natural waters. It may be perspective not only for the quantification of microplastics in natural waters but as well as for the purification of wastewaters containing microplastics.

2.
Anal Bioanal Chem ; 415(25): 6363-6373, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606645

RESUMO

Coiled tube field-flow fractionation (CTFFF) is currently applied to environmental and material studies. In the present work, a novel zone elution mode in CTFFF has been proposed and developed. Zone elution mode is based on the separation of particles by stepwise decreasing the flow rate of the carrier fluid and their subsequent elution at a constant flow rate. The fractionation parameters were optimized using a mixture of standard silica submicron particles (150, 390, and 900 nm). Taking samples of volcanic ash as examples, it has been demonstrated that zone elution mode can be successfully used for the fractionation of environmental nano- and submicron particles. For the first time, CTFFF was coupled online with a dynamic light scattering detector for the size characterization of eluted particles. Zone elution in CTFFF can serve for the further development of hyphenated techniques enabling efficient fractionation and size/elemental characterization of environmental particles in nano- and submicrometric size ranges.

3.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144840

RESUMO

Ageing processes of vehicle catalytic converters inevitably lead to the release of Pt and Pd into the environment, road dust being the main sink. Though Pt and Pd are contained in catalytic converters in nanoparticulate metallic form, under environmental conditions, they can be transformed into toxic dissolved species. In the present work, the distribution of Pt and Pd between dissolved, nanoparticulate, and microparticulate fractions of Moscow road dust is assessed. The total concentrations of Pt and Pd in dust vary in the ranges 9-142 ng (mean 35) and 155-456 (mean 235) ng g-1, respectively. The nanoparticulate and dissolved species of Pt and Pd in dust were studied using single particle inductively coupled plasma mass spectrometry. The median sizes of nanoparticulate Pt and Pd were 7 and 13 nm, respectively. The nanoparticulate fraction of Pt and Pd in Moscow dust is only about 1.6-1.8%. The average contents of dissolved fraction of Pt and Pd are 10.4% and 4.1%, respectively. The major fractions of Pt and Pd (88-94%) in road dust are associated with microparticles. Although the microparticulate fractions of Pt and Pd are relatively stable, they may become dissolved under changing environmental conditions and, hence, transformed into toxic species.


Assuntos
Poeira , Ródio , Poeira/análise , Monitoramento Ambiental , Paládio , Platina/análise , Ródio/análise , Emissões de Veículos/análise
4.
Chemosphere ; 281: 130950, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289616

RESUMO

Volcanic activity is one of the main sources of natural nanoparticles. It has been found earlier that the concentration of toxic metals/metalloids in nanoparticles of volcanic ash may be one or two orders of magnitude higher than in bulk sample. However, fate and behavior of toxic metals/metalloids depend on the type of their binding to nanoparticles. Hence, element species adsorbed onto pyroclastic nanoparticles and individual nanophases of metal/metalloid oxides or salts should be distinguished. For the first time, the single particle inductively coupled plasma mass spectrometry has been applied to the nanospeciation of volcanic particles. Ashes of four volcanoes of Kamchatka (Russia) were under study. Nanoparticles were separated from bulk ash samples using coiled-tube field-flow fractionation. It has been shown that the nanospeciation of Ni, Zn, Ag, Cd, Tl, As, Pb, Bi, Te, and Hg is dependent on element and volcano. In most cases these elements can be found both as species absorbed onto pyroclastic nanoparticles and as individual nanophases. The ratios of individual nanophases and adsorbed species vary with the sample. In nanoparticles of Tolbachik volcano ash, Ni, Zn, Tl, and Hg are present only as individual nanophases, while Bi, As, Pb, Ag, Cd, and Te are found both as adsorbed species and individual nanophases. The results obtained open a new door into study on the chemical composition of volcanic ash nanoparticles and their fate in the environment.


Assuntos
Metaloides , Monitoramento Ambiental , Espectrometria de Massas , Metais , Federação Russa , Erupções Vulcânicas
5.
Anal Bioanal Chem ; 413(15): 3999-4012, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893833

RESUMO

Natural nanomaterials, which play a very important role in environmental processes, are so far poorly studied. Firstly, the separation of nanoparticles from the bulk sample is a challenge. Secondly, the absence of reference natural nanomaterials makes it impossible to compare the results obtained by different researchers and develop a unified methodology for the separation and characterization of natural nanomaterials. Therefore, the development of reference natural nanomaterials is an urgent need of the environmental analytical chemistry. In this work, mineral nanoparticles (kaolinite, montmorillonite, muscovite, and quartz) have been studied as potential reference natural nanomaterials. A set of analytical methods including coiled-tube field-flow fractionation, scanning electron microscopy, dynamic light scattering, laser diffraction, inductively coupled plasma atomic emission, and mass spectrometry are applied to the separation and characterization of nanoparticles. It has been shown by laser diffraction that 93-98% of separated mineral nanoparticles are in the size range from about 40 to 300 nm, while 2-7% have size up to 830 nm. The size range of particles is confirmed by electron microscopy. Major (Al, Na, K, Ca, Fe), trace (Ti, Co, Cu, Zn, Tl, Pb, Bi, etc.), and rare earth elements have been determined in the suspensions of kaolinite, montmorillonite, and muscovite nanoparticles. Based on Al content, the concentration of mineral nanoparticles in suspensions is estimated. Agglomeration stability (consistency of size distribution) of nanoparticles at pH 6-8 is assessed. It has been shown that muscovite nanoparticles are stable at pH 7-8, whereas montmorillonite nanoparticles are stable only at pH 8 for at least 4 weeks. A noticeable agglomeration of kaolinite nanoparticles is observed at pH 6-8. Due to the low concentration of quartz nanoparticles, their characterization and stability assessment are hindered. The challenges of the development of reference natural nanomaterials are discussed.

6.
Environ Sci Pollut Res Int ; 28(24): 31850-31860, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33619622

RESUMO

Dimensional and elemental characterization of environmental nanoparticles is a challenging task that requires the use of a set of complementary analytical methods. Asymmetric flow field-flow fractionation coupled with UV-Vis, multi-angle laser light scattering and ICP-MS detection was applied to study the nanoparticle fraction of a volcanic ash sample, in a Milli-Q water suspension at pH 6.8. It has been shown that the separated by sedimentation nanoparticle fraction of the Klyuchevskoy volcano ash suspension contains 3 polydisperse populations for which size ranges (expressed in gyration radius, rG), hydrodynamic behaviours (evaluated via shape index) and elemental compositions are different. These 3 populations did not dissolve over the 72-h study but aggregated and settled out differently. Thus, the population of particles with gyration radii <140 nm (P1), which contained 6% Al2O3 and represented approximately 20% by mass of the nanoparticle fraction, remained in suspension without observable aggregation. The populations P2 and P3, which represented 67% and 13% by mass in the initial suspension, covered the rG range 25-250 nm and contained 17% and 15% Al2O3, respectively. Over time, populations P2 and P3 aggregated and their concentration in suspension at 72 h decreased by approximately 40% compared with the initial suspension. The decrease of these nanoparticle populations occurred either from the beginning of the temporal monitoring (P2) or after 30 h (P3). Aggregation generated a new population (P4) in suspension with rG up to 300 nm and mostly consisting of P2. This population represented only up to 6 to 7% of the nanoparticle fraction and decreased beyond 50 h. As a result, the trace elements present in the nanoparticle fraction and monitored (Cu and La) were also no longer found in the suspension. The results obtained can offer additional insights into the fate of volcanic ash nanoparticles in the environment.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas Metálicas , Nanopartículas , Nanopartículas Metálicas/análise , Nanopartículas/análise , Tamanho da Partícula , Erupções Vulcânicas , Água
7.
Genes (Basel) ; 11(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076350

RESUMO

Hypertrophic cardiomyopathy associated with damaging variants in the ALPK3 gene is a fairly recent discovery, and only a small number of patients have been described thus far. Here we present two additional patients with hypertrophic cardiomyopathy caused by biallelic variants in ALPK3. Genetic investigation was performed using a targeted gene panel consisting of known cardiomyopathy-associated genes and whole exome sequencing. The patients showed a large difference in the age of onset, and both presented with extracardiac features that are often seen in ALPK3 patients. The patient with the later onset showed milder extracardiac symptoms, such as decreased muscle tone and distal muscular dystrophy, but had fast progression of cardiac complications leading to the need of heart transplantation. This study further elucidates the variability of both symptoms and age of onset among these patients.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Heterozigoto , Homozigoto , Proteínas Musculares/genética , Músculo Esquelético/patologia , Mutação , Proteínas Quinases/genética , Adulto , Idade de Início , Cardiomiopatia Hipertrófica/genética , Feminino , Humanos , Recém-Nascido , Masculino , Músculo Esquelético/metabolismo , Fenótipo , Sequenciamento do Exoma , Adulto Jovem
8.
Anal Bioanal Chem ; 411(30): 8011-8021, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31781812

RESUMO

Nanoparticles (NPs) in the environment have a potential risk for human health and the ecosystem due to their ubiquity, specific characteristics, and properties (extreme mobility in the environment, abilities to accumulate of toxic elements and penetrate into living organisms). There is still a gap in studies on the chemical composition of natural NPs. The main reason is the difficulty to recover NPs, which may represent only one-thousandth or less of the bulk environmental sample, for further dimensional and quantitative characterization. In the present study, a methodology for the recovery of the nanoparticle fraction from polydisperse environmental samples was developed taking as example volcanic ashes from different regions of the world. For the first time, three separation methods, namely, filtration through a 0.45-µm membrane, sedimentation, and coiled tube field-flow fractionation (CTFFF), were comparatively studied. The separated fractions were characterized by laser diffraction and scanning electron microscopy and then analyzed by inductively coupled plasma atomic emission and mass spectrometry. It has been shown that all three methods provide the separation of NPs less than 400 nm from the bulk material. However, the fraction separated by sedimentation also contained a population (5% in mass) of submicron particles (~ 400-900 nm). The filtration resulted in low recovery of NPs. The determination of most trace elements was then impossible; the concentration of elements was under the limit of detection of the analytical instrument. The sedimentation and CTFFF made it possible to determine quantifiable concentrations for both major and trace elements in separated fractions. However, the sedimentation took 48 h while CTFFF enabled the fractionation time to be decreased down to 2 h. Hence, CTFFF looked to be the most promising method for the separation of NPs followed by their quantitative elemental analysis.

9.
Eur Heart J Case Rep ; 3(2)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31449587

RESUMO

BACKGROUND: There is a lack of information about a mixed type of amiodarone-induced thyrotoxicosis (AIT) after heart transplantation (HTx) with no amiodarone treatment in almost 1 year. Frequent ventricular extrasystoles (VES) associated with a mixed type of AIT can often be treated using thiamazole and prednisolone, without the need for specific antiarrhythmic treatment. CASE SUMMARY: We present a clinical case of a 65-year-old heart transplanted male patient with frequent VES associated with mixed type of AIT. Recipient had managed with amiodarone prior to HTx but there were no indications for it after the surgery. One year after antiarrhythmic treatment was discontinued, monomorphic VES (total amount: 27 472/day) were diagnosed. In addition, our investigation revealed that thyrotoxicosis developed. Prednisolone and thiamazole were added to the treatment with positive outcomes. The antithyroid treatment had been discontinued after 9 months and results of the 24-h Holter electrocardiogram monitoring showed only two VES/24 h. DISCUSSION: The case highlights the association of amiodarone, thyroid disorders, and VES. In mixed type AIT or if diagnosis is uncertain, it is reasonable to use mixed therapy. Next is to decide whether you need special treatment for VES. There was no evidence of ventricular tachycardia. Thyroid function tests remained normal off antithyroid medications and the total amount of VES significantly decreased. There were no indications for any antiarrhythmic treatment or ablation.

10.
Talanta ; 192: 395-399, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348408

RESUMO

The concentration of uranium and thorium in lead shields, which are used in underground particle physics research, should be monitored at sub-ppt levels. A combination of extraction chromatography and inductively coupled plasma mass spectrometry can resolve this analytical task. However, a multi-step complicated separation procedure and clean room are required. Besides, the recovery yields for U and Th do not exceed 80% and 60%, correspondingly. We propose an alternative approach. U and Th were pre-concentrated and separated from Pb by countercurrent chromatography, which is a support-free liquid-liquid chromatography. A series of two-phase extraction systems were tested. Under the optimized conditions, U and Th were extracted using a system 1 M HNO3/0.01 M tetraphenylmethylenediphosphine dioxide in chloroform and then eluted by 0.01 M aqueous solution of etidronic acid and determined by inductively coupled plasma mass spectrometry. The separation is performed in one chromatographic run, takes less than 1 h, and provides the quantitative recovery of U and Th. The limits of detection are 3 and 1 ppt for U and Th, correspondingly. The concentrations of U and Th in Roman lead, which was raised from the sea bottom, were lower than the limits of detection. It sounds unbelievable, nevertheless, the antique lead manufactured by Romans can indeed serve as a high-purity low-background material for the construction of Pb shields. Apart from the analysis of antique lead, the proposed approach can be easily extended to the determination of ultra trace impurities in different materials due to a very wide variety of two-phase extraction systems, which can be used in countercurrent chromatography.

11.
Environ Sci Pollut Res Int ; 26(6): 5315, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30280347

RESUMO

A comprehensive approach has been developed to the assessment of composition and properties of atmospherically deposited dust in the area affected by a copper smelter. The approach is based on the analysis of initial dust samples, dynamic leaching of water soluble fractions in a rotating coiled column (RCC) followed by the determination of recovered elements and characterization of size, morphology and elemental composition of nano-, submicron, and micron par ticles of dust separated using field-flow fractionation in a RCC. Three separated size fractions of dust (<0.2, 0.2-2, and >2 µm) were characterized by static light scattering and scanning electron microscopy, whereupon the fractions were analyzed by ICP-AES and ICP-MS (after digestion). It has been evaluated that toxic elements, which are characteristics for copper smelter emissions (As, Cu, Zn), are accumulated in fraction >2 µm. At the same time, up to 2.4, 3.1, 8.2, 6.7 g/kg of As, Cu, Zn, Pb, correspondently, were found in nanoparticles (<0.2 µm). It has been also shown that some trace elements (Sn, Sb, Ag, Bi, and Tl) are accumulated in fraction <0.2, and their content in this fraction may be one order of magnitude higher than that in the fraction >2 µm, or the bulk sample. It may be assumed that Sn, Sb, Ag, Bi, Tl compounds are adsorbed onto the finest dust particles as compared to As, Cu, Zn compounds, which are directly emitted from the copper smelter as microparticles.


Assuntos
Cobre/análise , Oligoelementos , Poeira/análise
12.
Chemosphere ; 210: 65-75, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29986225

RESUMO

Road-deposited sediments (RDS) present a sink for traffic-related pollutants including heavy metals (HMs). HMs associated with RDS particles enter the urban aquatic environment during rainfall events and have adverse effects for biota. RDS nanoscale particles (NSPs) require special consideration due to their specific properties, extremely high mobility in the environment, and ability to penetrate into living organisms. In the present work, the contribution of NSPs of RDS to the pollution of urban runoff by HMs has been evaluated for the first time. It has been shown that bulk RDS samples are polluted by HMs as compared to background urban soils (geo-accumulation indexes of Cu and Zn may attain 2-3). Meanwhile, NSPs of RDS are enriched by HMs as compared to bulk samples; concentration factor for Ni, Cu, Zn, Cd, Sn, and Pb in NSPs being varied from 2 to 10. The water-soluble fractions of RDS samples were also analyzed. Results have shown that the content of water-soluble HMs in RDS is insignificant and rarely exceeds 0.5% of the total contents of HMs in the bulk samples; the highest contents are identified for Cu and Pb. It should be noted that the water-soluble fraction is nearly free from Zn and this element is almost entirely present as particulate matter (NSPs). In general, the overall contribution of NSPs and water-soluble fraction of HMs to the pollution of urban runoff is comparable.


Assuntos
Poluição Ambiental , Metais Pesados/análise , Material Particulado/análise , Movimentos da Água , China , Poluentes Químicos da Água/análise
13.
Chemosphere ; 200: 16-22, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29471164

RESUMO

At present, there is concern about engineered nanoparticles in the environment, whereas natural nanoparticles (NPs) and their impact are often neglected. In our paper, we demonstrate the important role of nanoparticles of volcanic ash in transport of toxic elements on a global scale. A single volcanic eruption can eject millions of tons of ash. NPs of volcanic ash reach the upper troposphere and the stratosphere and may "travel" around the world for years affecting human health, environment, and even climate. So far, there is a gap in exposure assessment of volcanic ash NPs since their chemical composition remains largely unknown. Here we show for the first time that volcanic ash NPs can serve as an important carrier for potentially toxic elements. The concentrations of Ni, Zn, Cd, Ag, Sn, Se, Te, Hg, Tl, Pb, Bi in volcanic ash NPs (<100 nm) were found to be 10-500 times higher than total contents of these elements in bulk samples. This is valid for volcanoes from different regions of the world (Kamchatka, Far East of Russia and Andes, Chile). The work opens a new door into studies on biogeochemical impact of volcanic ash.


Assuntos
Poluentes Ambientais/química , Internacionalidade , Nanopartículas/química , Erupções Vulcânicas , Humanos
15.
Environ Sci Pollut Res Int ; 23(23): 23781-23790, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27623857

RESUMO

A comprehensive approach has been developed to the assessment of composition and properties of atmospherically deposited dust in the area affected by a copper smelter. The approach is based on the analysis of initial dust samples, dynamic leaching of water soluble fractions in a rotating coiled column (RCC) followed by the determination of recovered elements and characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of dust separated using field-flow fractionation in a RCC. Three separated size fractions of dust (<0.2, 0.2-2, and >2 µm) were characterized by static light scattering and scanning electron microscopy, whereupon the fractions were analyzed by ICP-AES and ICP-MS (after digestion). It has been evaluated that toxic elements, which are characteristics for copper smelter emissions (As, Cu, Zn), are accumulated in fraction >2 µm. At the same time, up to 2.4, 3.1, 8.2, 6.7 g/kg of As, Cu, Zn, Pb, correspondently, were found in nanoparticles (<0.2 µm). It has been also shown that some trace elements (Sn, Sb, Ag, Bi, and Tl) are accumulated in fraction <0.2, and their content in this fraction may be one order of magnitude higher than that in the fraction >2 µm, or the bulk sample. It may be assumed that Sn, Sb, Ag, Bi, Tl compounds are adsorbed onto the finest dust particles as compared to As, Cu, Zn compounds, which are directly emitted from the copper smelter as microparticles.


Assuntos
Poluentes Atmosféricos/toxicidade , Cobre/toxicidade , Poeira/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Cobre/análise , Cobre/química , Humanos , Mineração , Tamanho da Partícula , Medição de Risco , Federação Russa
16.
Chemosphere ; 146: 371-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26741541

RESUMO

Continuous-flow (dynamic) leaching in a rotating coiled column has been applied to studies on the mobility of Zn, Cd, Cu, Pb, Ni, Sb, As, S, and other potentially toxic elements in atmospherically deposited dust samples collected near a large copper smelter (Chelyabinsk region, Russia). Water and simulated "acid rain" (pH 4) were used as eluents. The technique enables not only the fast and efficient leaching of elements but as well time-resolved studies on the mobilization of heavy metals, sulphur, and arsenic in environmentally relevant forms to be made. It is shown that up to 1.5, 4.1, 1.9, 11.1, and 46.1% of Pb, As, Cu, Zn, and S, correspondingly, can be easily mobilized by water. Taking into consideration that the total concentrations of these elements in the samples under investigation are surprisingly high and vary in the range from 2.7 g/kg (for arsenic) to 15.5 g/kg (for sulphur), the environmental impact of the dust may be dramatic. The simulated acid rain results in somewhat higher recoveries of elements, except Cu and Pb. The proposed approach and the data obtained can very useful for the risk assessment related to the mobility of potentially toxic elements and their inclusion in the biogeochemical cycle.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Poeira/análise , Metais Pesados/análise , Chuva Ácida , Monitoramento Ambiental/métodos , Metalurgia , Federação Russa
17.
J Chromatogr A ; 1381: 202-9, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25597894

RESUMO

Field-flow fractionation (FFF) is a very powerful and versatile set of liquid chromatography-like elution methods. However, conventional FFF separations occur in thin channels and the sample weight injected is usually less than 1 mg to avoid overloading. The fractionation in a rotating coiled column (RCC), which can be attributed to sedimentation FFF, enables the handling sample weight to be increased at least up to 1 g. An uneven distribution of particles in RCC was first observed by Y. Ito et al. in 1966. The work in this direction was continued by P.S. Fedotov et al. in 2000. Regularities of the behaviour of nano- and microparticles of different size and origin in RCCs with different design parameters were systematically studied taking as example silica particles, latex beads, quartz sand, clay minerals, and other samples. The basic principles of the new FFF method were established. The developed method was applied to the speciation analysis of polydisperse environmental samples, in particular, for the separation of soils into silt, clay and sand fractions. For the first time, nano- and submicron particles of street dust have been separated, weighted, characterized by electronic microscopy, and quantitatively analyzed by ICP-MS (after digestion). The elements that may be of anthropogenic origin (Zn, Cr, Ni, Cu, Cd, Sn, Pb) were found to concentrate mainly in <0.3 and 0.3-1 µm fractions. It has been shown that the concentrations of Cr, Ni, Zn in the finest fraction (<0.3 µm) of street dust can be one order of magnitude higher than the concentrations of elements in bulk sample. The fractionation in RCC was also used for the recovery of a nearly monodisperse fraction (4.5 µm) of a chromatographic sorbent based on polystyrene-divinylbenzene; impurities remaining from the synthesis and smaller particles (1-2 µm) being removed. Study on the fractionation of synthetic samples has demonstrated the applicability of the method to the preparative separation and purification of polydisperse materials.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Nanopartículas/análise , Poeira/análise , Fracionamento por Campo e Fluxo/instrumentação , Tamanho da Partícula , Material Particulado/análise , Dióxido de Silício/análise , Solo/química
18.
Talanta ; 130: 1-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25159372

RESUMO

For the first time, nano- and submicron particles of street dust have been separated, weighted, and analyzed. A novel technique, sedimentation field-flow fractionation in a rotating coiled column, was applied to the fractionation of dust samples with water being used as a carrier fluid. The size and morphology of particles in the separated fractions were characterized by electronic microscopy before digestion and the determination of the concentration of elements by ICP-AES and ICP-MS. The elements that may be of anthropogenic origin (Zn, Cr, Ni, Cu, Cd, Sn, Pb) were found to concentrate mainly in <0.3 and 0.3-1 µm fractions. It has been shown that the concentrations of Cr, Ni, Zn in the finest fraction (<0.3 µm) of street dust can be one order of magnitude higher than the concentrations of elements in bulk sample and coarse fractions. For example, the concentrations of Ni in <0.3, 0.3-1, 1-10, and 10-100 µm fractions were 297 ± 46, 130 ± 21, 36 ± 10, and 21 ± 4 mg/kg, correspondingly. Though the finest particles present only about 0.1 mass% of the sample they are of special concern due to their increased mobility and ability to penetrate into the deepest alveolar area of the lungs. For rare earth elements (La, Ce, Pr, Nd, Sm) that are evidently of natural source and may be found in soil minerals, in contrary, higher concentrations were observed in large particles (10-100 µm). Sc was an exception that needs further studies. The proposed approach to the fractionation and analysis of nano-, submicron, and micron particles can be a powerful tool for risk assessment related to toxic elements in dust, ash, and other particulate environmental samples.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Fracionamento por Campo e Fluxo/métodos , Metais/química , Fracionamento Químico , Tamanho da Partícula
19.
Talanta ; 88: 369-74, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22265512

RESUMO

Dynamic fractionation is considered to be an attractive alternative to conventional batch sequential extraction procedures for partitioning of trace metals and metalloids in environmental solid samples. This paper reports the first results on the continuous-flow dynamic fractionation of selenium using two different extraction systems, a microcolumn (MC) packed with the solid sample and a rotating coiled column (RCC) in which the particulate matter is retained under the action of centrifugal forces. The eluents (leachants) were applied in correspondence with a four-step sequential extraction scheme for selenium addressing "soluble", "adsorbed", "organically bound", and "elemental" Se fractions extractable by distilled water, phosphate buffer, tetramethylammonium hydroxide, and sodium sulphite solutions, respectively. Selenium was determined in the effluent by using an inductively coupled plasma atomic emission spectrometer. Contaminated creek sediment and dumped waste (soil) samples from the abandoned mining area were used to evaluate resemblances and discrepancies of two continuous-flow methods for Se fractionation. In general, similar trends were found for Se distribution between extractable and residual fractions. However, for the dumped waste sample which is rich in organic matter, the extraction in RCC provided more effective recovery of environmentally relevant Se forms (the first three leachable fractions). The most evident deviation was observed for "adsorbed" Se (recoveries by RCC and MC are 43 and 7 mg kg(-1), respectively). The data obtained were correlated with peculiarities of samples under investigation and operational principles of RCC and MC.


Assuntos
Sedimentos Geológicos/química , Selênio/análise , Poluentes do Solo/análise , Oligoelementos/análise , Adsorção , Soluções Tampão , Centrifugação , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Monitoramento Ambiental , Compostos de Amônio Quaternário/química , Espectrofotometria Atômica , Sulfitos/química , Água/química
20.
Anal Bioanal Chem ; 400(6): 1787-804, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21318253

RESUMO

Submicron and micron particles present in liquid environmental, biological, and technological samples differ in their dimensions, shape, mass, chemical composition, and charge. Their properties cannot be reliably studied unless the particles are fractionated. Synthetic particles applied as components of analytical systems may also need preliminary fractionation and investigation. The review is focused on the methods for fractionation and characterization of nanoparticles and microparticles in liquid media, the most representative examples of their application, and the trends in developing novel approaches to the separation and investigation of particles. Among the separation techniques, the main attention is devoted to membrane filtration, field-flow fractionation, chromatographic, and capillary electrokinetic methods. Microfluidic systems employing the above-mentioned and other separation principles and providing a basis for the fabrication of lab-on-chip devices are also examined. Laser light scattering methods and other physical techniques for the characterization of particles are considered. Special attention is given to "hyphenated" techniques which enable the separation and characterization of particles to be performed in online modes.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Dispositivos Lab-On-A-Chip , Lasers , Membranas Artificiais , Espalhamento de Radiação , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...