Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374462

RESUMO

Perovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices' low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field. Since degradation processes are spatially heterogeneous, the behaviors of perovskite films under an applied electric field should be visualized with nanoscale resolution. Herein, we report a direct nanoscale visualization of methylammonium (MA+) cation dynamics in methylammonium lead iodide (MAPbI3) films during field-induced degradation, using infrared scattering-type scanning near-field microscopy (IR s-SNOM). The obtained data reveal that the major aging pathways are related to the anodic oxidation of I- and the cathodic reduction of MA+, which finally result in the depletion of organic species in the channel of the device and the formation of Pb. This conclusion was supported by a set of complementary techniques such as time-of-flight secondary ion mass spectrometry (ToF-SIMS), photoluminescence (PL) microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved field-induced degradation dynamics of hybrid perovskite absorbers and the identification of more promising materials resistant to the electric field.

2.
J Phys Chem Lett ; 11(1): 221-228, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31814411

RESUMO

Herein, we reveal for the first time a comprehensive mechanism of poorly investigated electrochemical decomposition of CH3NH3PbI3 using a set of microscopy techniques (optical, AFM, PL) and ToF-SIMS. We demonstrate that applied electric bias induces the oxidation of I- to I2, which remains trapped in the film in the form of polyiodides, and hence, the process can be conceivably reversed by reduction. On the contrary, reduction of organic methylammonium cation produces volatile products, which leave the film and thus make the degradation irreversible. Our results lead to a paradigm change when considering design principles for improving the stability of complex lead halide materials as those featuring organic cations rather than halide anions as the most electric field-sensitive components. Suppressing the electrochemical degradation of complex lead halides represents a crucial challenge, which should be addressed in order to bring the operational stability of perovskite photovoltaics to commercially interesting benchmarks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...