Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897970

RESUMO

The Industrial Internet of Things (IIoT) paradigm represents a significant leap forward for sensor networks, potentially enabling wide-area and innovative measurement systems. In this scenario, smart sensors might be equipped with novel low-power and long range communication technologies to realize a so-called low-power wide-area network (LPWAN). One of the most popular representative cases is the LoRaWAN (Long Range WAN) network, where nodes are based on the widespread LoRa physical layer, generally optimized to minimize energy consumption, while guaranteeing long-range coverage and low-cost deployment. Additive manufacturing is a further pillar of the IIoT paradigm, and advanced measurement capabilities may be required to monitor significant parameters during the production of artifacts, as well as to evaluate environmental indicators in the deployment site. To this end, this study addresses some specific LoRa-based smart sensors embedded within artifacts during the early stage of the production phase, as well as their behavior once they have been deployed in the final location. An experimental evaluation was carried out considering two different LoRa end-nodes, namely, the Microchip RN2483 LoRa Mote and the Tinovi PM-IO-5-SM LoRaWAN IO Module. The final goal of this research was to assess the effectiveness of the LoRa-based sensor network design, both in terms of suitability for the aforementioned application and, specifically, in terms of energy consumption and long-range operation capabilities. Energy optimization, battery life prediction, and connectivity range evaluation are key aspects in this application context, since, once the sensors are embedded into artifacts, they will no longer be accessible.


Assuntos
Artefatos , Fontes de Energia Elétrica , Monitorização Fisiológica
2.
Sensors (Basel) ; 22(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214541

RESUMO

The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramatically reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established technologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission- and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications.

3.
Sensors (Basel) ; 20(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933087

RESUMO

Factory automation systems based on the IEEE 802.11 Wi-Fi standard may benefit from its Multi-Rate Support (MRS) feature, which allows for dynamically selecting the most suitable transmission rate for the targeted application context. The MRS is implemented by means of rate adaptation algorithms (RAAs), which has already demonstrated to be effective to improve both timeliness and reliability, which are typically strict requirements of industrial real-time communication systems. Indeed, some of such algorithms have been specifically conceived for reliable real-time communications. However, the computational complexity of such algorithms has not been effectively investigated yet. In this paper, we address such an issue, particularly focusing on the execution times of some specific rate adaptation algorithms, as well as on their impact on the automation tasks. In this respect, after a formal description of the algorithms, we present the outcomes of an extensive experimental session, which includes practical measurements and realistic simulations. The obtained results are encouraging, since the measured execution times indicate that rate adaptation algorithms can be profitably adopted by industrial automation systems, allowing for improving their reliability and timeliness without impacting on the overall performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...