Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(50): e2211713119, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469770

RESUMO

The origin of the seed magnetic field that is amplified by the galactic dynamo is an open question in plasma astrophysics. Aside from primordial sources and the Biermann battery mechanism, plasma instabilities have also been proposed as a possible source of seed magnetic fields. Among them, thermal Weibel instability driven by temperature anisotropy has attracted broad interests due to its ubiquity in both laboratory and astrophysical plasmas. However, this instability has been challenging to measure in a stationary terrestrial plasma because of the difficulty in preparing such a velocity distribution. Here, we use picosecond laser ionization of hydrogen gas to initialize such an electron distribution function. We record the 2D evolution of the magnetic field associated with the Weibel instability by imaging the deflections of a relativistic electron beam with a picosecond temporal duration and show that the measured [Formula: see text]-resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to ~1% of the plasma thermal energy into magnetic energy, thus supporting the notion that the magnetic field induced by the Weibel instability may be able to provide a seed for the galactic dynamo.

2.
Sci Rep ; 9(1): 17223, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748616

RESUMO

A real-time, nondestructive, Bragg-diffracted electron beam energy, energy-spread and spatial-pointing jitter monitor is experimentally verified by encoding the electron beam energy and spatial-pointing jitter information into the mega-electron-volt ultrafast electron diffraction pattern. The shot-to-shot fluctuation of the diffraction pattern is then decomposed to two basic modes, i.e., the distance between the Bragg peaks as well as its variation (radial mode) and the overall lateral shift of the whole pattern (drift mode). Since these two modes are completely decoupled, the Bragg-diffraction method can simultaneously measure the shot-to-shot energy fluctuation from the radial mode with 2·10-4 precision and spatial-pointing jitter from the drift mode having wide measurement span covering energy jitter range from 10-4 to 10-1. The key advantage of this method is that it allows us to extract the electron beam energy spread concurrently with the ongoing experiment and enables online optimization of the electron beam especially for future high charge single-shot ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) experiments. Furthermore, real-time energy measurement enables the filtering process to remove off-energy shots, improving the resolution of time-resolved UED. As a result, this method can be applied to the entire UED user community, beyond the traditional electron beam diagnostics of accelerators used by accelerator physicists.

3.
Sci Rep ; 9(1): 5115, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914665

RESUMO

In this article, we report our proof-of-principle design and experimental commissioning of a broadly tunable and low-cost transverse focusing lens system for MeV-energy electron beams. The lens system based on electromagnetic (EM) quadrupoles has been built as a part of the existing instrument for ultra-fast electron diffraction (UED) experiments at the Accelerator Test Facility II (ATF-II) at Brookhaven National Laboratory (BNL). We experimentally demonstrated the independent control of the size and divergence of the beam with the charge ranging from 1 to 13 pC. The charge density and divergence of the beam at the sample are the most important factors determining the quality of the Bragg-diffraction image (BDI). By applying the Robust Conjugate Directional Search (RCDS) algorithm for online optimization of the quadrupoles, the transverse beam size can be kept constant down to 75 µm from 1 to 13 pC. The charge density is nearly two orders of magnitude higher than the previously achieved value using a conventional solenoid. Using the BDI method we were able to extract the divergence of the beam in real-time and apply it to the emittance measurement for the first time. Our results agree well with simulations and with the traditional quadrupole scan method. The real-time divergence measurement opens the possibility of online optimization of the beam divergence (<0.2 mrad) at the sample with the increased beam charge. This optimization is crucial for the future development of single-shot ultra-fast electron microscope (UEM). Finally, we demonstrated BDI with significant improvement, up to 3 times higher peak intensity and 2 times sharper Bragg-diffraction peaks at 13 pC. The charge is now limited by the laser power and increasing charge may improve the quality of BDI further. The capability we demonstrated here provides us with opportunities for new sciences using near-parallel, bright and ultrafast electron beams for single-shot imaging, to directly visualize the dynamics of defects and nanostructured materials, or even record molecular movie, which are impossible using present electron-beam technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...