Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(18): 10179-10188, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32347288

RESUMO

The bottom-up fabrication of functional nanosystems for light-harvesting applications and excitonic devices often relies on molecular self-assembly. Gaining access to the intermediate species involved in self-assembly would provide valuable insights into the pathways via which the final architecture has evolved, yet difficult to achieve due to their intrinsically short-lived nature. Here, we employ a lab-on-a-chip approach as a means to obtain in situ control of the structural complexity of an artificial light-harvesting complex: molecular double-walled nanotubes. Rapid and stable dissolution of the outer wall was realized via microfluidic mixing thereby rendering the thermodynamically unstable inner tubes accessible to spectroscopy. By measurement of the linear dichroism and time-resolved photoluminescence of both double-walled nanotubes and isolated inner tubes we show that the optical (excitonic) properties of the inner tube are remarkably robust to such drastic perturbation of the system's supramolecular structure as removal of the outer wall. The developed platform is readily extendable to a broad range of practical applications such as e.g. self-assembling systems and molecular photonics devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...