Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychiatry Res Neuroimaging ; 330: 111611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796237

RESUMO

Deep brain stimulation (DBS) is an established neuromodulatory intervention against otherwise treatment-refractory obsessive-compulsive disorder (OCD). Several DBS targets, all of which are part of brain networks connecting basal ganglia and prefrontal cortex, alleviate OCD symptoms. Stimulation of these targets is thought to unfold its therapeutic effect by modulation of network activity through internal capsule (IC) connections. Research into DBS-induced network changes and the nature of IC-related effects of DBS in OCD is needed to further improve DBS. Here, we studied the effects of DBS at the ventral medial striatum (VMS) and IC on blood-oxygen level dependent (BOLD) responses in awake rats using functional magnetic resonance imaging (fMRI). BOLD-signal intensity was measured in five regions of interest (ROIs): medial and orbital prefrontal cortex, nucleus accumbens (NAc), IC area, and mediodorsal thalamus. In previous rodent studies, stimulation at both target locations resulted in a reduction of OCD-like behavior and activation of prefrontal cortical areas. Therefore, we hypothesized that stimulation at both targets would result in partially overlapping BOLD responses. Both differential and overlapping activity between VMS and IC stimulation was found. Stimulating the caudal part of the IC resulted in activation around the electrode, while stimulating the rostral part of the IC resulted in increased cross-correlations between the IC area, orbitofrontal cortex, and NAc. Stimulation of the dorsal part of the VMS resulted in increased activity in the IC area, suggesting this area is activated during both VMS and IC stimulation. This activation is also indicative of VMS-DBS impacting corticofugal fibers running through the medial caudate into the anterior IC, and both VMS and IC DBS might act on these fibers to induce OCD-reducing effects. These results show that rodent fMRI with simultaneous electrode stimulation is a promising approach to study the neural mechanisms of DBS. Comparing the effects of DBS in different target areas has the potential to improve our understanding of the neuromodulatory changes that take place across various networks and connections in the brain. Performing this research in animal disease models will lead to translational insights in the mechanisms underlying DBS, and can aid improvement and optimization of DBS in patient populations.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Humanos , Ratos , Animais , Vigília , Encéfalo , Núcleo Accumbens/fisiologia
2.
J Neurosci Methods ; 360: 109240, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34097929

RESUMO

BACKGROUND: In humans, functional magnetic resonance imaging (fMRI) cannot be used to its full potential to study the effects of deep-brain stimulation (DBS) on the brain due to safety reasons. Application of DBS in small animals is an alternative, but was hampered by technical limitations thus far. NEW METHOD: We present a novel setup that extends the range of available applications by studying animals in a clinical scanner. We used a 3 T-MRI scanner with a custom-designed receiver coil and a restrainer to measure brain activity in awake rats. DBS electrodes made of silver were used to minimize electromagnetic artifacts. Before scanning, rats were habituated to the restrainer. RESULTS: Using our novel setup, we observed minor DBS-electrode artifacts, which did not interfere with brain-activity measurements significantly. Movement artifacts were also minimal and were not further reduced by restrainer habituation. Bilateral DBS in the dorsal part of the ventral striatum (dVS) resulted in detectable increases in brain activity around the electrodes tips. COMPARISON WITH EXISTING METHODS: This novel setup offers a low-cost alternative to dedicated small-animal scanners. Moreover, it can be implemented in widely available clinical 3 T scanners. Although spatial and temporal resolution was lower than what is achieved in anesthetized rats in high-field small-animal scanners, we obtained scans in awake animals, thus, testing the effects of bilateral DBS of the dVS in a more physiological state. CONCLUSIONS: With this new technical setup, the neurobiological mechanism of action of DBS can be explored in awake, restrained rats in a clinical 3 T-MRI scanner.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Ratos , Vigília
3.
Clocks Sleep ; 3(1): 31-52, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498259

RESUMO

Animals, including humans, frequently make decisions involving risk or uncertainty. Different strategies in these decisions can be advantageous depending the circumstances. Short sleep duration seems to be associated with more risky decisions in humans. Animal models for risk-based decision making can increase mechanistic understanding, but very little data is available concerning the effects of sleep. We combined primary- and meta-research to explore the relationship between sleep and risk-based decision making in animals. Our first objective was to create an overview of the available animal models for risky decision making. We performed a systematic scoping review. Our searches in Pubmed and Psychinfo retrieved 712 references, of which 235 were included. Animal models for risk-based decision making have been described for rodents, non-human primates, birds, pigs and honey-bees. We discuss task designs and model validity. Our second objective was to apply this knowledge and perform a pilot study on the effect of sleep deprivation. We trained and tested male Wistar rats on a probability discounting task; a "safe" lever always resulted in 1 reward, a "risky" lever resulted in 4 or no rewards. Rats adapted their preferences to variations in reward probabilities (p < 0.001), but 12 h of sleep deprivation during the light phase did not clearly alter risk preference (p = 0.21).

4.
J Circadian Rhythms ; 17: 7, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31303885

RESUMO

Sleep seems essential to proper functioning of the prefrontal cortex (PFC). The role of different neurotransmitters has been studied, mainly the catecholamines and serotonin. Less attention has been paid to the amino acid transmitters and histamine. Here, we focus on the activity of these molecules in the PFC during sleep and sleep deprivation (SD). We determined extracellular concentrations of histamine and 8 amino acids in the medial PFC before, during and after SD. Additionally, we systematically reviewed the literature on studies reporting microdialysis measurements relating to sleep throughout the brain. In our experiment, median concentrations of glutamate were higher during SD than during baseline (p = 0.013) and higher during the dark-active than during the resting phase (p = 0.003). Glutamine was higher during post-SD recovery than during baseline (p = 0.010). For other compounds, no differences were observed between light and dark circadian phase, and between sleep deprivation, recovery and baseline. We retrieved 13 papers reporting on one or more of the molecules of interest during naturally occurring sleep, 2 during sleep deprivation and 2 during both. Only two studies targeted PFC. Histamine was low during sleep, but high during sleep deprivation and wakefulness, irrespective of brain area. Glu (k = 11) and GABA (k = 8) concentrations in different brain areas were reported to peak during sleep or wakefulness or to lack state-dependency. Aspartate, glycine, asparagine and taurine were less often studied (1-2 times), but peaked exclusively during sleep. Sleep deprivation increased glutamate and GABA exclusively in the cortex. Further studies are needed for drawing solid conclusions.

5.
J Circadian Rhythms ; 17: 1, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30671123

RESUMO

Disruption of the monoaminergic system, e.g. by sleep deprivation (SD), seems to promote certain diseases. Assessment of monoamine levels over the circadian cycle, during different sleep stages and during SD is instrumental to understand the molecular dynamics during and after SD. To provide a complete overview of all available evidence, we performed a systematic review. A comprehensive search was performed for microdialysis and certain monoamines (dopamine, serotonin, noradrenaline, adrenaline), certain monoamine metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA)) and a precursor (5-hydroxytryptophan (5-HTP)) in PubMed and EMBASE. After screening of the search results by two independent reviewers, 94 publications were included. All results were tabulated and described qualitatively. Network-meta analyses (NMAs) were performed to compare noradrenaline and serotonin concentrations between sleep stages. We further present experimental monoamine data from the medial prefrontal cortical (mPFC). Monoamine levels varied with brain region and circadian cycle. During sleep, monoamine levels generally decreased compared to wake. These qualitative observations were supported by the NMAs: noradrenaline and serotonin levels decreased from wakefulness to slow wave sleep and decreased further during Rapid Eye Movement sleep. In contrast, monoamine levels generally increased during SD, and sometimes remained high even during subsequent recovery. Decreases during or after SD were only reported for serotonin. In our experiment, SD did not affect any of the mPFC monoamine levels. Concluding, monoamine levels vary over the light-dark cycle and between sleep stages. SD modifies the patterns, with effects sometimes lasting beyond the SD period.

6.
J Circadian Rhythms ; 16: 11, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30483348

RESUMO

The neuroregulator adenosine is involved in sleep-wake control. Basal forebrain (BF) adenosine levels increase during sleep deprivation. Only a few studies have addressed the effect of sleep deprivation on extracellular adenosine concentrations in other brain regions. In this paper, we describe a microdialysis experiment as well as a meta-analysis of published data. The 64 h microdialysis experiment determined the extracellular adenosine and adenosine monophosphate (AMP) concentrations in the medial prefrontal cortex of rats before, during and after 12 h of sleep deprivation by forced locomotion. The meta-analysis comprised published sleep deprivation animal experiments measuring adenosine by means of microdialysis. In the animal experiment, the overall median adenosine concentration was 0.36 nM and ranged from 0.004 nM to 27 nM. No significant differences were observed between the five conditions: 12 h of wash-out, baseline light phase, baseline dark phase, 12 h of sleep deprivation and 12 h of subsequent recovery. The overall median AMP concentration was 0.10 nM and ranged from 0.001 nM to 7.56 nM. Median AMP concentration increased during sleep deprivation (T = 47; p = 0.047) but normalised during subsequent recovery. The meta-analysis indicates that BF dialysate adenosine concentrations increase with 74.7% (95% CI: 54.1-95.3%) over baseline during sleep deprivation. Cortex dialysate adenosine concentrations during sleep deprivation were so far only reported by 2 publications. The increase in adenosine during sleep deprivation might be specific to the BF. At this stage, the evidence for adenosine levels in other brain regions is based on single experiments and insufficient for generalised conclusions. Further experiments are currently still warranted.

7.
Biol Psychiatry ; 84(12): 917-925, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29954580

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment for patients with obsessive-compulsive disorder (OCD) that do not respond to conventional therapies. Although the precise mechanism of action of DBS remains unknown, modulation of activity in corticofugal fibers originating in the prefrontal cortex is thought to underlie its beneficial effects in OCD. METHODS: To gain more mechanistic insight into DBS in OCD, we used Sapap3 mutant mice. These mice display excessive self-grooming and increased anxiety, both of which are responsive to therapeutic drugs used in OCD patients. We selected two clinically relevant DBS targets through which activity in prefronto-corticofugal fibers may be modulated: the internal capsule (IC) and the dorsal part of the ventral striatum (dVS). RESULTS: IC-DBS robustly decreased excessive grooming, whereas dVS-DBS was on average less effective. Grooming was reduced rapidly after IC-DBS onset and reinstated upon DBS offset. Only IC-DBS was associated with increased locomotion. DBS in both targets induced c-Fos expression around the electrode tip and in different regions of the prefrontal cortex. This prefronto-cortical activation was more extensive after IC-DBS, but not associated with behavioral effects. Furthermore, we found that the decline in grooming cannot be attributed to altered locomotor activity and that anxiety, measured on the elevated plus maze, was not affected by DBS. CONCLUSIONS: DBS in both the IC and dVS reduces compulsive grooming in Sapap3 mutant mice. However, IC stimulation was more effective, but also produced motor activation, even though both DBS targets modulated activity in a similar set of prefrontal cortical fibers.


Assuntos
Estimulação Encefálica Profunda , Asseio Animal , Cápsula Interna/cirurgia , Transtorno Obsessivo-Compulsivo/psicologia , Estriado Ventral/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/terapia
8.
Neuroscience ; 364: 82-92, 2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-28918253

RESUMO

Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) induces rapid improvement of depressive symptoms in patients suffering from treatment-refractory major depressive disorder (MDD). It has been hypothesized that activation of the dopamine (DA) system contributes to this effect. To investigate whether DBS in the MFB affects DA release in the striatum, we combined DBS with fast-scan cyclic voltammetry (FSCV) in freely moving rats. Animals were implanted with a stimulating electrode at the border of the MFB and the ventral tegmental area, and a FSCV microelectrode in the ventromedial striatum to monitor extracellular DA during the acute onset of DBS and subsequent continued stimulation. DBS onset induced a significant increase in extracellular DA concentration in the ventromedial striatum that was sustained for at least 40s. However, continued DBS did not affect amplitude or frequency of so-called spontaneous phasic DA transients, nor phasic DA release in response to the delivery of unexpected food pellets. These findings suggest that effects of DBS in the MFB are mediated by an acute change in extracellular DA concentration, but more research is needed to further explore the potentially sustained duration of this effect. Together, our results provide both support and refinement of the hypothesis that MFB DBS activates the DA system: DBS induces an increase in overall ambient concentration of DA, but spontaneous or reward-associated more rapid, phasic DA dynamics are not enhanced. This knowledge improves our understanding of how DBS affects brain function and may help improve future therapies for depressive symptoms.


Assuntos
Estimulação Encefálica Profunda , Dopamina/metabolismo , Feixe Prosencefálico Mediano , Recompensa , Estriado Ventral/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Técnicas de Química Analítica , Masculino , Ratos , Ratos Wistar
9.
Neuroscience ; 345: 110-123, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-27185487

RESUMO

Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a previous study, we showed that phasic DA release patterns in the ventromedial striatum (VMS) rapidly adapt during reversal learning. However, it is unknown how DA dynamics in the dorsolateral striatum (DLS) are modulated during such adaptive behavior. Here, we used fast-scan cyclic voltammetry to measure phasic DA release in the DLS during spatial reversal learning. In the DLS, we observed minor DA release after the onset of a visual cue signaling reward availability, followed by more pronounced DA release during more proximal reward cues (e.g., lever extension) and execution of the operant response (i.e., lever press), both in rewarded and non-rewarded trials. These release dynamics (minor DA after onset of the predictive visual cue, prominent DA during the operant response) did not change significantly during or following a reversal of response-reward contingencies. Notably, the DA increase to the lever press did not reflect a general signal related to the initiation of any motivated motor response, as we did not observe DA release when rats initiated nose pokes into the food receptacle during inter-trial intervals. This suggests that DA release in the DLS occurs selectively during the initiation and execution of a learned operant response. Together with our previous results obtained in the VMS, these findings reveal distinct phasic DA release patterns during adaptation of established behavior in DLS and VMS. The VMS DA signal, which is highly sensitive to reversal of response-reward contingences, may provide a teaching signal to guide reward-related learning and facilitate behavioral adaptation, whereas DLS DA may reflect a 'response execution signal' largely independent of outcome, that may be involved in initiation and energizing of operant behavior.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Reversão de Aprendizagem/fisiologia , Animais , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Estimulação Elétrica , Eletrodos Implantados , Masculino , Ratos Wistar , Recompensa , Aprendizagem Espacial/fisiologia
10.
Eur Neuropsychopharmacol ; 26(2): 310-319, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712326

RESUMO

The efficacy of selective serotonin reuptake inhibitors (SRIs) in psychiatric disorders may be "augmented" through the addition of atypical antipsychotic drugs. A synergistic increase in dopamine (DA) release in the prefrontal cortex has been suggested to underlie this augmentation effect, though the mechanism of action is not clear yet. We used in vivo microdialysis in rats to study DA release following the administration of combinations of fluvoxamine (10 mg/kg) and quetiapine (10 mg/kg) with various monoamine-related drugs. The results confirmed that the selective 5-HT1A antagonist WAY-100635 (0.05 mg/kg) partially blocked the fluvoxamine-quetiapine synergistic effect (maximum DA increase dropped from 325% to 214%). A novel finding is that the α1-adrenergic blocker prazosin (1 mg/kg), combined with fluvoxamine, partially mimicked the effect of augmentation (maximum DA increase 205%; area-under-the-curve 163%). As this suggested that prazosin augmentation might be tested in a clinical study, we performed an open clinical trial of prazosin 20 mg addition to SRI in therapy-resistant patients with obsessive-compulsive disorder applying for neurosurgery. A small, non-significant reduction in Yale Brown Obsessive Compulsive Scale (Y-BOCS) scores was observed in 10 patients and one patient was classified as a responder with a reduction in Y-BOCS scores of more than 25%. We suggest that future clinical studies augmenting SRIs with an α1-adrenergic blocker in less treatment resistant cases should be considered. The clinical trial "Prazosin in combination with a serotonin reuptake inhibitor for patients with Obsessive Compulsive disorder: an open label study" was registered at 24/05/2011 under trial number ISRCTN61562706: http://www.controlled-trials.com/ISRCTN61562706.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Antidepressivos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Fluvoxamina/uso terapêutico , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Prazosina/uso terapêutico , Adulto , Animais , Área Sob a Curva , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas/uso terapêutico , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Adulto Jovem
11.
Neurobiol Learn Mem ; 125: 135-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26343836

RESUMO

Striatal dopamine (DA) is central to reward-based learning. Less is known about the contribution of DA to the ability to adapt previously learned behavior in response to changes in the environment, such as a reversal of response-reward contingencies. We hypothesized that DA is involved in the rapid updating of response-reward information essential for successful reversal learning. We trained rats to discriminate between two levers, where lever availability was signaled by a non-discriminative cue. Pressing one lever was always rewarded, whereas the other lever was never rewarded. After reaching stable discrimination performance, a reversal was presented, so that the previously non-rewarded lever was now rewarded and vice versa. We used fast-scan cyclic voltammetry to monitor DA release in the ventromedial striatum. During discrimination performance (pre-reversal), cue presentation induced phasic DA release, whereas reward delivery did not. The opposite pattern was observed post-reversal: Striatal DA release emerged after reward delivery, while cue-induced release diminished. Trial-by-trial analysis showed rapid reinstatement of cue-induced DA release on trials immediately following initial correct responses. This effect of positive feedback was observed in animals that learned the reversal, but not in 'non-learners'. In contrast, neither pre-reversal responding and DA signaling, nor post-reversal DA signaling in response to negative feedback differed between learners and non-learners. Together, we show that phasic DA dynamics in the ventromedial striatum encoding reward-predicting cues are associated with positive feedback during reversal learning. Furthermore, these signals predict individual differences in learning that are not present prior to reversal, suggesting a distinct role for dopamine in the adaptation of previously learned behavior.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Reversão de Aprendizagem/fisiologia , Recompensa , Animais , Sinais (Psicologia) , Aprendizagem por Discriminação/fisiologia , Individualidade , Masculino , Ratos
12.
PLoS One ; 9(6): e99873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24937739

RESUMO

Little is known about the effects of chronic fluoxetine on 5-HT transmission in the adolescent brain, even though it is acknowledged that the neuroplasticity of the brain during childhood and adolescence might influence the neurobiological mechanisms underlying treatment response. Also, possible ongoing effects on monoamine function following drug discontinuation are unidentified. We therefore examined the chronic effects of fluoxetine on extracellular 5-HT and dopamine concentrations in the medial prefrontal cortex and studied their responsiveness to an acute 5-HT challenge after a one-week washout period, both in adolescent and adult rats. Noradrenaline was measured in adult animals only. Fluoxetine increased 5-HT to 200-300% of control and DA and NA to 150% of control. Although there were no lasting effects of chronic fluoxetine on basal monoamine levels, we observed a clear potentiating effect of previous treatment on the fluoxetine-induced increase in extracellular 5-HT and, to a lesser extent, extracellular DA. No differential effect was found for noradrenaline. Age-at-treatment did not influence these results. So, after cessation of chronic fluoxetine treatment 5-HT responsiveness remains heightened. This may be indicative of the continuing presence of 5-HT receptor desensitization, at least until one week after drug discontinuation in rats. No apparent age-at-treatment effects on extracellular monoamine concentrations in the medial prefrontal cortex were detected, but age-related differences in 5-HT transmission further down-stream or in the recovery processes cannot be ruled out.


Assuntos
Fluoxetina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/farmacologia , Serotonina/farmacologia , Animais , Área Sob a Curva , Relação Dose-Resposta a Droga , Fluoxetina/farmacocinética , Masculino , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética
13.
Front Neurosci ; 7: 226, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339800

RESUMO

Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 µA increased Fos immunoreactivity in the LHA compared to sham or 100 µA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

14.
Front Neurosci ; 7: 201, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24204329

RESUMO

Striatal dopamine (DA) is thought to code for learned associations between cues and reinforcers and to mediate approach behavior toward a reward. Less is known about the contribution of DA to cognitive flexibility-the ability to adapt behavior in response to changes in the environment. Altered reward processing and impairments in cognitive flexibility are observed in psychiatric disorders such as obsessive compulsive disorder (OCD). Patients with this disorder show a disruption of functioning in the frontostriatal circuit and alterations in DA signaling. In this review we summarize findings from animal and human studies that have investigated the involvement of striatal DA in cognitive flexibility. These findings may provide a better understanding of the role of dopaminergic dysfunction in cognitive inflexibility in psychiatric disorders, such as OCD.

15.
J Neurosci Methods ; 217(1-2): 44-53, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23603331

RESUMO

The relationship between learning and sleep is multifaceted; learning influences subsequent sleep characteristics, which may in turn influence subsequent memory. Studies in humans indicate that sleep may not only prevent degradation of acquired memories, but even enhance performance without further practice. In a rodent instrumental learning task, individual differences occur in how fast rats learn to associate lever pressing with food reward. Rats habitually sleep between learning sessions, and may differ in this respect. The current study assessed if the instrumental leaning paradigm could serve as a model to study sleep-dependent memory enhancement. Male Wistar rats performed 2 sessions of instrumental learning per day for 1-3 days. Electroencephalography was recorded both before and after the sessions. Sleep deprivation (3 h) was applied between the first and second session in a subgroup of rats. Measurements comprised the number of lever presses in each session, slow wave sleep (SWS) duration, Rapid Eye Movement Sleep (REMS) duration and sleep spindles. Baseline sleep parameters were similar for fast and slow learning rats. Task-exposure increased REMS-duration. The increase in REMS-duration was observed specifically after sessions in which learning occurred, but not after a later session. Sleep deprivation during the 3h period between the initial two sessions interfered with performance enhancement, but did not prevent this in all rats. Our considered movement control protocol induced partial sleep deprivation and also interfered with performance enhancement. The classic instrumental learning task provides a practical model for animal studies on sleep-dependent memory enhancement.


Assuntos
Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Aprendizagem/fisiologia , Modelos Animais , Desempenho Psicomotor/fisiologia , Sono/fisiologia , Animais , Mapeamento Encefálico , Humanos , Masculino , Ratos , Ratos Wistar
16.
Behav Brain Res ; 245: 7-12, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23396148

RESUMO

Deep Brain Stimulation (DBS) is a successful novel treatment for treatment-resistant obsessive-compulsive disorder and is currently under investigation for addiction and eating disorders. Clinical and preclinical studies have shown functional changes in the orbitofrontal cortex (OFC) following DBS in the ventral capsule/ventral striatum. These findings suggest that DBS can affect neural activity in distant regions that are connected to the site of electrode implantation. However, the behavioral consequences of direct OFC stimulation are not known. Here, we studied the effects of direct stimulation in the lateral OFC on spatial discrimination and reversal learning in rats. Rats were implanted with stimulating electrodes and were trained on a spatial discrimination and reversal learning task. DBS in the OFC did not affect acquisition of a spatial discrimination. Stimulated animals made more incorrect responses during the first reversal. Acquisition of the second reversal was not affected. These results suggest that DBS may inhibit activity in the OFC, or may disrupt output of the OFC to other cortical or subcortical areas, resulting in perseverative behavior or an inability to adapt behavior to altered response-reward contingencies.


Assuntos
Estimulação Encefálica Profunda/efeitos adversos , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia , Animais , Condicionamento Operante/fisiologia , Interpretação Estatística de Dados , Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/fisiologia , Eletrodos Implantados , Lobo Frontal/fisiologia , Masculino , Ratos , Ratos Wistar , Percepção Espacial/fisiologia
17.
J Neurochem ; 123(6): 897-903, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061486

RESUMO

Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is effective in treatment-refractory obsessive-compulsive disorder and major depressive disorder. However, little is known about the neurobiological mechanisms underlying the rapid and effective changes of DBS. One of the hypotheses is that DBS modulates activity of monoamine neurotransmitters. In this study, we evaluated the effects of DBS in the NAc core on the extracellular concentration of monoaminergic neurotransmitters in the medial (mPFC) and orbital prefrontal cortex (OFC). Freely moving rats were bilaterally stimulated in the NAc core for 2 h while dopamine, serotonin, and noradrenaline were measured using in vivo microdialysis in the mPFC and the OFC. We report rapid increases in the release of dopamine and serotonin to a maximum of 177% and 127% in the mPFC and an increase up to 171% and 166% for dopamine and noradrenaline in the OFC after onset of stimulation in the NAc core. These results provide further evidence for the distal effects of DBS and corroborate previous clinical and pre-clinical findings of altered neuronal activity in prefrontal areas.


Assuntos
Monoaminas Biogênicas/metabolismo , Estimulação Encefálica Profunda/métodos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Regulação para Cima/fisiologia , Animais , Dopamina/metabolismo , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Norepinefrina/metabolismo , Núcleo Accumbens/citologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Wistar , Serotonina/metabolismo
18.
Sleep ; 35(2): 211-21, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22294811

RESUMO

STUDY OBJECTIVES: Task-switching is an executive function involving the prefrontal cortex. Switching temporarily attenuates the speed and/or accuracy of performance, phenomena referred to as switch costs. In accordance with the idea that prefrontal function is particularly sensitive to sleep loss, switch-costs increase during prolonged waking in humans. It has been difficult to investigate the underlying neurobiological mechanisms because of the lack of a suitable animal model. Here, we introduce the first switch-task for rats and report the effects of sleep deprivation and inactivation of the medial prefrontal cortex. DESIGN: Rats were trained to repeatedly switch between 2 stimulus-response associations, indicated by the presentation of a visual or an auditory stimulus. These stimulus-response associations were offered in blocks, and performance was compared for the first and fifth trials of each block. Performance was tested after exposure to 12 h of total sleep deprivation, sleep fragmentation, and their respective movement control conditions. Finally, it was tested after pharmacological inactivation of the medial prefrontal cortex. SETTINGS: Controlled laboratory settings. PARTICIPANTS: 15 male Wistar rats. MEASUREMENTS & RESULTS: Both accuracy and latency showed switch-costs at baseline. Twelve hours of total sleep deprivation, but not sleep fragmentation, impaired accuracy selectively on the switch-trials. Inactivation of the medial prefrontal cortex by local neuronal inactivation resulted in an overall decrease in accuracy. CONCLUSIONS: We developed and validated a switch-task that is sensitive to sleep deprivation. This introduces the possibility for in-depth investigations on the neurobiological mechanisms underlying executive impairments after sleep disturbance in a rat model.


Assuntos
Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor , Privação do Sono/fisiopatologia , Sono/fisiologia , Análise de Variância , Animais , Atenção , Condicionamento Psicológico , Modelos Animais de Doenças , Eletroencefalografia , Função Executiva , Masculino , Ratos , Ratos Wistar , Tempo de Reação , Análise e Desempenho de Tarefas , Fatores de Tempo , Vigília
19.
Behav Brain Res ; 230(1): 40-7, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22321457

RESUMO

Sleep deprivation affects cognitive functions that depend on the prefrontal cortex (PFC) such as cognitive flexibility, and the consolidation of newly learned information. The identification of cognitive processes that are either robustly sensitive or robustly insensitive to the same experimental sleep deprivation procedure, will allow us to better focus on the specific effects of sleep on cognition, and increase understanding of the mechanisms involved. In the present study we investigate whether sleep deprivation differentially affects the two separate cognitive processes of acquisition and consolidation of a spatial reversal task. After training on a spatial discrimination between two levers in a Skinner box, male Wistar rats were exposed to a reversal of the previously learned stimulus-response contingency. We first evaluated the effect of sleep deprivation on the acquisition of reversal learning. Performance on reversal learning after 12h of sleep deprivation (n=12) was compared to performance after control conditions (n=12). The second experiment evaluated the effect of sleep deprivation on the consolidation of reversal learning; the first session of reversal learning was followed by 3h of nap prevention (n=8) or undisturbed control conditions (n=8). The experiments had sufficient statistical power (0.90 and 0.81, respectively) to detect differences with medium effect sizes. Neither the acquisition, nor the consolidation, of reversal learning was affected by acute sleep deprivation. Together with previous findings, these results help to further delineate the role of sleep in cognitive processing.


Assuntos
Reversão de Aprendizagem/fisiologia , Privação do Sono/fisiopatologia , Comportamento Espacial/fisiologia , Adaptação Fisiológica , Análise de Variância , Animais , Condicionamento Operante , Sinais (Psicologia) , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar
20.
J Neurosci Methods ; 202(2): 113-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21565219

RESUMO

Recent publications have shown promising results of deep brain stimulation (DBS) in the nucleus accumbens for patients with obsessive compulsive disorder and major depressive disorder. Despite its increasing application in the clinical setting, the neurobiological mechanism of action of DBS is still uncertain. One of the possible effects of DBS might be phasic or tonic changes in monoamine release either locally in the target area or in a distant, connected region. In the present study we investigate whether unilateral DBS of the Nucleus Accumbens Core (NAc core) has a local effect on in vivo monoamine release. Freely moving animals were unilaterally stimulated with 300 µA or 400 µA (120 Hz, pulse width 80 µs) in the NAc core for 5 h. 1h before and during stimulation we measured dopamine, serotonin, their metabolites and noradrenaline using in vivo microdialysis. We found no significant effect of stimulation on extracellular concentrations of monoaminergic neurotransmitters or their metabolites in the NAc core during stimulation. Our results suggest that the rapid effects of DBS in the NAc are not a result of changes in local monoamine release in the NAc core. For future directions it is interesting to note that several microdialysis and electrophysiology studies have shown effects of DBS in areas distant from the stimulation target.


Assuntos
Catecolaminas/metabolismo , Estimulação Encefálica Profunda/métodos , Microdiálise/métodos , Núcleo Accumbens/metabolismo , Serotonina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...