Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132405, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651932

RESUMO

Previous studies have reported select contaminants of emerging concern (CECs) in limited areas of the Chesapeake Bay (USA), but no comprehensive efforts have been conducted. In this work, 43 antibiotics, 9 hormones, 11 UV filters, and sucralose, were measured in matched water, sediment, and oyster samples from 58 sites. The highest sucralose concentration was 3051 ng L-1 in a subwatershed with 4.43 million liters of wastewater effluent per day (MLD) and 4385 septic systems. Although antibiotic occurrence was generally low in subwatersheds located in less populated areas, 102 ng L-1 ciprofloxacin was detected downstream of 0.58 MLD wastewater effluent and 10 animal feeding operations. Hormones were not regularly detected in water (2%) or oysters (37%), but the high detection frequencies in sediment (74%) were associated with septic systems. UV filters were ubiquitously detected in oysters, and octisalate exhibited the highest concentration (423 ng g-1). Oyster-phase oxybenzone and aqueous-phase sucralose concentrations were significantly correlated to wastewater effluent and septic systems, respectively. Toxicity outcomes were predicted for homosalate and octisalate throughout the Bay, and antimicrobial resistance concerns were noted for the Chester River. The geospatial and co-occurrence relationships constitute crucial advances to understanding CEC occurrence in the Chesapeake Bay and elsewhere.


Assuntos
Antibacterianos , Baías , Animais , Águas Residuárias , Água
2.
J Expo Sci Environ Epidemiol ; 33(4): 524-536, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37380877

RESUMO

Non-targeted analysis (NTA) and suspect screening analysis (SSA) are powerful techniques that rely on high-resolution mass spectrometry (HRMS) and computational tools to detect and identify unknown or suspected chemicals in the exposome. Fully understanding the chemical exposome requires characterization of both environmental media and human specimens. As such, we conducted a review to examine the use of different NTA and SSA methods in various exposure media and human samples, including the results and chemicals detected. The literature review was conducted by searching literature databases, such as PubMed and Web of Science, for keywords, such as "non-targeted analysis", "suspect screening analysis" and the exposure media. Sources of human exposure to environmental chemicals discussed in this review include water, air, soil/sediment, dust, and food and consumer products. The use of NTA for exposure discovery in human biospecimen is also reviewed. The chemical space that has been captured using NTA varies by media analyzed and analytical platform. In each media the chemicals that were frequently detected using NTA were: per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals in water, pesticides and polyaromatic hydrocarbons (PAHs) in soil and sediment, volatile and semi-volatile organic compounds in air, flame retardants in dust, plasticizers in consumer products, and plasticizers, pesticides, and halogenated compounds in human samples. Some studies reviewed herein used both liquid chromatography (LC) and gas chromatography (GC) HRMS to increase the detected chemical space (16%); however, the majority (51%) only used LC-HRMS and fewer used GC-HRMS (32%). Finally, we identify knowledge and technology gaps that must be overcome to fully assess potential chemical exposures using NTA. Understanding the chemical space is essential to identifying and prioritizing gaps in our understanding of exposure sources and prior exposures. IMPACT STATEMENT: This review examines the results and chemicals detected by analyzing exposure media and human samples using high-resolution mass spectrometry based non-targeted analysis (NTA) and suspect screening analysis (SSA).


Assuntos
Poluentes Ambientais , Expossoma , Humanos , Poluentes Ambientais/análise , Plastificantes/análise , Solo , Poeira/análise , Água/análise
3.
Sci Total Environ ; 670: 398-410, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30904653

RESUMO

The occurrence of UV-filters in the environment has raised concerns over potentially adverse impacts on corals. In this study, the concentrations of 13 UV-filters and 11 hormones were measured in surface seawater, sediment, and coral tissue from 19 sites in Oahu, Hawaii. At least eight UV-filters were detected in seawater, sediment, and coral tissue and total mass concentrations of all UV-filters were <750 ng L-1, <70 ng g-1 dry weight (dw), and <995 ng g-1 dw, respectively. Four UV-filters were detected in water, sediment, and coral tissue at detection frequencies of 63-100%, 56-91%, and 82-100%, respectively. These UV-filter concentrations generally varied as follows: water, homosalate (HMS) > octisalate (OS) > benzophenone-3 (BP-3, also known as oxybenzone) > octocrylene (OC); sediment, HMS > OS > OC > BP-3; coral, OS ≈ HMS > OC ≈ BP-3. BP-3 concentrations in surface seawater were <10 ng L-1 at 12 of 19 sites and highest at Waikiki beach (e.g., 10.9-136 ng L-1). While BP-3 levels were minimal in sediment (e.g., <1 ng g-1 dw at 18 of 19 sites), and ranged from 6.6 to 241 ng g-1 dw in coral tissue. No quantifiable levels of 2-ethylhexyl 4-methoxycinnamate (also known as octinoxate) were recorded in surface seawater or coral tissues, but 5-12.7 ng g-1 dw was measured for sediment at 5 of 19 sites. No hormones were detected in seawater or sediment, but 17α-ethinylestradiol was present in three corals from Kaneohe Bay. Surfactant degradation products were present in seawater, especially at Waikiki beach. These results demonstrate ubiquitous parts-per-trillion concentrations of UV-filters in surface seawater and is the first report of UV-filters in coral tissue from U.S.A. coastal waters. These data inform the range of environmentally-relevant concentrations for future risk assessments on the potential impacts of UV-filters on coral reefs in Oahu, Hawaii.


Assuntos
Monitoramento Ambiental , Água do Mar/química , Protetores Solares/análise , Poluentes Químicos da Água/análise , Acrilatos , Animais , Antozoários , Benzofenonas , Recifes de Corais , Havaí , Salicilatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...