Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35625984

RESUMO

Targeted therapies have shown striking success in the treatment of cancer over the last years. However, their specific effects on an individual tumor appear to be varying and difficult to predict. Using an integrative modeling approach that combines mechanistic and regression modeling, we gained insights into the response mechanisms of breast cancer cells due to different ligand-drug combinations. The multi-pathway model, capturing ERBB receptor signaling as well as downstream MAPK and PI3K pathways was calibrated on time-resolved data of the luminal breast cancer cell lines MCF7 and T47D across an array of four ligands and five drugs. The same model was then successfully applied to triple negative and HER2-positive breast cancer cell lines, requiring adjustments mostly for the respective receptor compositions within these cell lines. The additional relevance of cell-line-specific mutations in the MAPK and PI3K pathway components was identified via L1 regularization, where the impact of these mutations on pathway activation was uncovered. Finally, we predicted and experimentally validated the proliferation response of cells to drug co-treatments. We developed a unified mathematical model that can describe the ERBB receptor and downstream signaling in response to therapeutic drugs targeting this clinically relevant signaling network in cell line that represent three major subtypes of breast cancer. Our data and model suggest that alterations in this network could render anti-HER therapies relevant beyond the HER2-positive subtype.

2.
Sci Rep ; 12(1): 7336, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513409

RESUMO

Cells are exposed to oxidative stress and reactive metabolites every day. The Nrf2 signaling pathway responds to oxidative stress by upregulation of antioxidants like glutathione (GSH) to compensate the stress insult and re-establish homeostasis. Although mechanisms describing the interaction between the key pathway constituents Nrf2, Keap1 and p62 are widely reviewed and discussed in literature, quantitative dynamic models bringing together these mechanisms with time-resolved data are limited. Here, we present an ordinary differential equation (ODE) based dynamic model to describe the dynamic response of Nrf2, Keap1, Srxn1 and GSH to oxidative stress caused by the soft-electrophile diethyl maleate (DEM). The time-resolved data obtained by single-cell confocal microscopy of green fluorescent protein (GFP) reporters and qPCR of the Nrf2 pathway components complemented with siRNA knock down experiments, is accurately described by the calibrated mathematical model. We show that the quantitative model can describe the activation of the Nrf2 pathway by compounds with a different mechanism of activation, including drugs which are known for their ability to cause drug induced liver-injury (DILI) i.e., diclofenac (DCF) and omeprazole (OMZ). Finally, we show that our model can reveal differences in the processes leading to altered activation dynamics amongst DILI inducing drugs.


Assuntos
Hepatócitos , Fator 2 Relacionado a NF-E2 , Humanos , Glutationa/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
3.
J Mol Biol ; 433(21): 167240, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34508725

RESUMO

Receptor tyrosine kinases (RTK) bind growth factors and are critical for cell proliferation and differentiation. Their dysregulation leads to a loss of growth control, often resulting in cancer. Epidermal growth factor receptor (EGFR) is the prototypic RTK and can bind several ligands exhibiting distinct mitogenic potentials. Whereas the phosphorylation on individual EGFR sites and their roles for downstream signaling have been extensively studied, less is known about ligand-specific ubiquitination events on EGFR, which are crucial for signal attenuation and termination. We used a proteomics-based workflow for absolute quantitation combined with mathematical modeling to unveil potentially decisive ubiquitination events on EGFR from the first 30 seconds to 15 minutes of stimulation. Four ligands were used for stimulation: epidermal growth factor (EGF), heparin-binding-EGF like growth factor, transforming growth factor-α and epiregulin. Whereas only little differences in the order of individual ubiquitination sites were observed, the overall amount of modified receptor differed depending on the used ligand, indicating that absolute magnitude of EGFR ubiquitination, and not distinctly regulated ubiquitination sites, is a major determinant for signal attenuation and the subsequent cellular outcomes.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Epirregulina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador alfa/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/genética , Epirregulina/química , Epirregulina/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/química , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Ligantes , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteômica , Fator de Crescimento Transformador alfa/química , Fator de Crescimento Transformador alfa/genética , Ubiquitinação
4.
Sci Rep ; 9(1): 12709, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481718

RESUMO

About 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3. To this end, fluorescence microscopy, monitoring the amount of HER2 expression in the plasma membrane, was combined with mathematical modeling to derive the flux of HER2 receptors from and to the membrane. We constructed a dynamic multi-compartment model based on ordinary differential equations. To account for cancer cell heterogeneity, a first, dynamic model was expanded to a second model including two distinct cell phenotypes, with implications for different conformational states of HER2, i.e. monomeric or homodimeric. Our mathematical model shows that the hypothesis of fast constitutive HER2 recycling back to the plasma membrane does not match the experimental data. It conclusively describes the experimental observation that trastuzumab induces sustained receptor internalization in cells with membrane ruffles. It is also concluded that for rare, non-ruffled (flat) cells, HER2 internalization occurs three orders of magnitude slower than for the bulk, ruffled cell population.


Assuntos
Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Receptor ErbB-2/metabolismo , Trastuzumab/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/patologia , Feminino , Humanos , Transporte Proteico , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/farmacologia
6.
PLoS One ; 12(11): e0187628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176862

RESUMO

Phytoene desaturase (PDS) is an essential plant carotenoid biosynthetic enzyme and a prominent target of certain inhibitors, such as norflurazon, acting as bleaching herbicides. PDS catalyzes the introduction of two double bonds into 15-cis-phytoene, yielding 9,15,9'-tri-cis-ζ-carotene via the intermediate 9,15-di-cis-phytofluene. We present the necessary data to scrutinize functional implications inferred from the recently resolved crystal structure of Oryza sativa PDS in a complex with norflurazon. Using dynamic mathematical modeling of reaction time courses, we support the relevance of homotetrameric assembly of the enzyme observed in crystallo by providing evidence for substrate channeling of the intermediate phytofluene between individual subunits at membrane surfaces. Kinetic investigations are compatible with an ordered ping-pong bi-bi kinetic mechanism in which the carotene and the quinone electron acceptor successively occupy the same catalytic site. The mutagenesis of a conserved arginine that forms a hydrogen bond with norflurazon, the latter competing with plastoquinone, corroborates the possibility of engineering herbicide resistance, however, at the expense of diminished catalytic activity. This mutagenesis also supports a "flavin only" mechanism of carotene desaturation not requiring charged residues in the active site. Evidence for the role of the central 15-cis double bond of phytoene in determining regio-specificity of carotene desaturation is presented.


Assuntos
Oryza/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Biocatálise/efeitos dos fármacos , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida , Simulação por Computador , Ensaios Enzimáticos , Cinética , Espectrometria de Massas , Modelos Moleculares , Mutação/genética , Oxirredutases/antagonistas & inibidores , Multimerização Proteica , Piridazinas/farmacologia , Estereoisomerismo , Especificidade por Substrato , Fatores de Tempo
7.
J Exp Bot ; 67(21): 5993-6005, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27811075

RESUMO

The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9-C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Dioxigenases/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão , Dioxigenases/metabolismo , Espectrometria de Massas , Especificidade por Substrato , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...