Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1258518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022636

RESUMO

Immunopeptidomics, the study of peptide antigens presented on the cell surface by the major histocompatibility complex (MHC), offers insights into how our immune system recognises self/non-self in health and disease. We recently discovered that hyper-processed (remodelled) N-glycans are dominant features decorating viral spike immunopeptides presented via MHC-class II (MHC-II) molecules by dendritic cells pulsed with SARS-CoV-2 spike protein, but it remains unknown if endogenous immunopeptides also undergo N-glycan remodelling. Taking a multi-omics approach, we here interrogate published MHC-II immunopeptidomics datasets of cultured monocyte-like (THP-1) and breast cancer-derived (MDA-MB-231) cell lines for overlooked N-glycosylated peptide antigens, which we compare to their source proteins in the cellular glycoproteome using proteomics and N-glycomics data from matching cell lines. Hyper-processed chitobiose core and paucimannosidic N-glycans alongside under-processed oligomannosidic N-glycans were found to prevalently modify MHC-II-bound immunopeptides isolated from both THP-1 and MDA-MB-231, while complex/hybrid-type N-glycans were (near-)absent in the immunopeptidome as supported further by new N-glycomics data generated from isolated MHC-II-bound peptides derived from MDA-MB-231 cells. Contrastingly, the cellular proteomics and N-glycomics data from both cell lines revealed conventional N-glycosylation rich in complex/hybrid-type N-glycans, which, together with the identification of key lysosomal glycosidases, suggest that MHC-II peptide antigen processing is accompanied by extensive N-glycan trimming. N-glycan remodelling appeared particularly dramatic for cell surface-located glycoproteins while less remodelling was observed for lysosomal-resident glycoproteins. Collectively, our findings indicate that both under- and hyper-processed N-glycans are prevalent features of endogenous MHC-II immunopeptides, an observation that demands further investigation to enable a better molecular-level understanding of immune surveillance.


Assuntos
Glicoproteínas , Complexo Principal de Histocompatibilidade , Humanos , Glicoproteínas/química , Polissacarídeos/metabolismo , Peptídeos , Glicoproteínas de Membrana
2.
Comput Struct Biotechnol J ; 21: 1678-1687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890882

RESUMO

Immunopeptidomics has made tremendous contributions to our understanding of antigen processing and presentation, by identifying and quantifying antigenic peptides presented on the cell surface by Major Histocompatibility Complex (MHC) molecules. Large and complex immunopeptidomics datasets can now be routinely generated using Liquid Chromatography-Mass Spectrometry techniques. The analysis of this data - often consisting of multiple replicates/conditions - rarely follows a standard data processing pipeline, hindering the reproducibility and depth of analysis of immunopeptidomic data. Here, we present Immunolyser, an automated pipeline designed to facilitate computational analysis of immunopeptidomic data with a minimal initial setup. Immunolyser brings together routine analyses, including peptide length distribution, peptide motif analysis, sequence clustering, peptide-MHC binding affinity prediction, and source protein analysis. Immunolyser provides a user-friendly and interactive interface via its webserver and is freely available for academic purposes at https://immunolyser.erc.monash.edu/. The open-access source code can be downloaded at our GitHub repository: https://github.com/prmunday/Immunolyser. We anticipate that Immunolyser will serve as a prominent computational pipeline to facilitate effortless and reproducible analysis of immunopeptidomic data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...