Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 1): 140350, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39032291

RESUMO

This study collected multidimensional feature data such as spectra, texture, and component contents of Polygonati Rhizoma from different origins and varieties (Polygonatum kingianum Coll. et Hemsl from Yunnan and Guizhou; Polygonatum cyrtonema Hua from Anhui and Jiangxi; Polygonatum sibiricum Red from Hunan). Multivariate statistical analysis was used to select 39 characteristic factors for distinguishing PR origins and 14 characteristic factors for discriminating PR varieties (VIP > 1 and P < 0.05). In addition, by combining multivariate statistical analysis with a deep belief network (DBN) classification algorithm, a novel artificial intelligence algorithm was developed and optimized. Compared to traditional discriminant analysis methods, the accuracy of this new approach was significantly improved, achieving a 100% discrimination rate for PR varieties and a 100% accuracy rate for tracing the origin of PR. This research provides a reference and data support for constructing intelligent algorithms based on multidimensional data fusion, to achieve food variety discrimination and origin tracing.

2.
Food Chem ; 442: 138408, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241985

RESUMO

This study utilized computer vision to extract color and texture features of Pericarpium Citri Reticulatae (PCR). The ultra-fast gas-phase electronic nose (UF-GC-E-nose) technique successfully identified 98 volatile components, including olefins, alcohols, and esters, which significantly contribute to the flavor profile of PCR. Multivariate statistical Analysis was applied to the appearance traits of PCR, identifying 57 potential marker-trait factors (VIP > 1 and P < 0.05) from the 118 trait factors that can distinguish PCR from different origins. These factors include color, texture, and odor traits. By integrating multivariate statistical Analysis with the BP neural network algorithm, a novel artificial intelligence algorithm was developed and optimized for traceability of PCR origin. This algorithm achieved a 100% discrimination rate in differentiating PCR samples from various origins. This study offers a valuable reference and data support for developing intelligent algorithms that utilize data fusion from multiple intelligent sensory technologies to achieve rapid traceability of food origins.


Assuntos
Citrus , Medicamentos de Ervas Chinesas , Nariz Eletrônico , Inteligência Artificial , Algoritmos , Redes Neurais de Computação , Computadores
3.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630228

RESUMO

The rhizome of Atractylodes lancea (Thunb.) DC. (AL), called Maocangzhu in Chinese, is a geoherbalism medical herb in Jiangsu Province that is often used in the prescription of traditional Chinese medicine (TCM), such as for the treatment of COVID-19. The landform and climatic environment of each province varies greatly from south to north, which has an important influence on the chemical constituents in AL. However, there is a lack of research on the significance of its geoherbalism, especially in water-soluble parts other than volatile oil. In this study, eight known compounds were isolated and obtained as reference substances from AL. In addition, liquid chromatography coupled with triple-quadrupole time-of-flight tandem mass spectrometry (LC-triple TOF-MS/MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze and characterize chemical constituents from different habitats. Moreover, orthogonal partial least-squares discriminant analysis (OPLS-DA) was applied to reveal the differential metabolomics in AL from different habitats based on the qualitative information of the chemical constituents. Results showed that a total of 33 constituents from GC-MS and 106 constituents from LC-triple TOF-MS/MS were identified or inferred, including terpenoids, polyacetylenes, and others; meanwhile, the fragmentation pathways of different types of compounds were preliminarily deduced from the fragmentation behavior of the major constituents. According to the variable importance in projection (VIP) and p-values, only one volatile differential metabolite was identified by GC-MS screening: ß-eudesmol. Overall, five differential metabolites were identified by LC-triple TOF-MS/MS screening: sucrose, 4(15),11-eudesmadiene; atractylenolide I, 3,5,11-tridecatriene-7,9-diyne-1,2-diacetate, and (3Z,5E,11E)-tridecatriene-7,9-diynyl-1-O-(E)-ferulate. This study provides metabolomic information for the establishment of a comprehensive quality evaluation system for AL.


Assuntos
Atractylodes , COVID-19 , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Metabolômica , Cromatografia Líquida
4.
Front Pharmacol ; 14: 1087654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969877

RESUMO

Background: Curcumae Radix (CW) is traditionally used to treat primary dysmenorrea (PD). However, the mechanisms of action of CW in the treatment of PD have not yet been comprehensively resolved. Objective: To investigate the therapeutic effects of CW on PD and its possible mechanisms of action. Methods: An isolated uterine spastic contraction model induced by oxytocin was constructed in an in vitro pharmacodynamic assay. An animal model of PD induced by combined estradiol benzoate and adrenaline hydrochloride-assisted stimulation was established. After oral administration of CW, a histopathological examination was performed and biochemical factor levels were measured to evaluate the therapeutic effect of CW on PD. The chemical compositions of the drug-containing serum and its metabolites were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Network pharmacology and serum untargeted metabolomics were used to predict the mechanism of CW treatment for PD, and the predicted results were validated by RT-qPCR, WB, and targeted fatty acid (FA) metabolism. Results: In vitro, CW can relax an isolated uterus by reducing uterine motility. In vivo, the results showed that CW attenuated histopathological damage in the uterus and regulated PGF2α, PGE2, ß-EP, 5-HT, and Ca2+ levels in PD rats. A total of 66 compounds and their metabolites were identified in the drug-containing serum, and the metabolic pathways of these components mainly included hydrogenation and oxidation. Mechanistic studies showed that CW downregulated the expression of key genes in the 5-HTR/Ca2+/MAPK pathway, such as 5-HTR2A, IP3R, PKC, cALM, and ERK. Similarly, CW downregulated the expression of key proteins in the 5-HTR/Ca2+/MAPK pathway, such as p-ERK/ERK. Indirectly, it ameliorates the abnormal FA metabolism downstream of this signaling pathway in PD rats, especially the metabolism of arachidonic acid (AA). Conclusion: The development of PD may be associated with the inhibition of the 5-HTR/Ca2+/MAPK signaling pathway and FA metabolic pathways, providing a basis for the subsequent exploitation of CW.

5.
Sci Adv ; 9(6): eade5393, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763655

RESUMO

Dysregulated endocrine hormones (EHs) contribute to tumorigenesis, but how EHs affect the tumor immune microenvironment (TIM) and the immunotherapy of non-small cell lung cancer (NSCLC) is still unclear. Here, endogenous ouabain (EO), an adrenergic hormone, is elevated in patients with NSCLC and closely related to tumor pathological stage, metastasis, and survival. EO promotes the suppression of TIM in vivo by modulating the expression of immune checkpoint proteins, in which programmed cell death protein ligand 1 (PD-L1) plays a major role. EO increases PD-L1 transcription; however, the EO receptor Na- and K-dependent adenosine triphosphatase (Na, K-ATPase) α1 interacts with PD-L1 to trigger the endocytic degradation of PD-L1. This seemingly contradictory result led us to discover the mechanism whereby EO cooperates with Na, K-ATPase α1 to finely control PD-L1 expression and dampen tumoral immunity. In conclusion, the Na, K-ATPase α1/EO signaling facilitates immune escape in lung cancer, and manipulation of this signaling shows great promise in improving immunotherapy for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Antígeno B7-H1 , Neoplasias Pulmonares , ATPase Trocadora de Sódio-Potássio , Humanos , Adenosina Trifosfatases , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Ligantes , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Microambiente Tumoral , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
J Ethnopharmacol ; 303: 115977, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481245

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jinzhen Oral Liquid (JZOL) is a traditional Chinese patent medicine and widely used clinically, which consists of eight herbs including Bovis Calculus Atifactus, Fritillariae Ussuriensis Bulbus (Fritillaria ussuriensis Maxim.), Caprae Hircus Cornu, Rhei Radix et Rhizoma (Rheum palmatum L.), Scutellariae Radix (Scutellaria baicalensis Georgi), Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch. ex DC.), Chloriti Lapis, and Gypsum Fibrosum (Their ratio is 9.45 : 47.25: 94.5 : 31.5: 15.75 : 31.5: 15.75 : 23.62). A large number of clinical studies have proved that JZOL has a good antiviral effect and can treat lung injury, pneumonia, and bronchitis caused by a variety of viral infections. AIM OF THE STUDY: Influenza infection frequently exhibit dysregulation of gut microbiota and host metabolomes, but the mechanism of JZOL is still unclear and needs to be further explored. Here, after influenza virus infection induced lung injury, the regulation roles of JZOL in metabolic and gut microbiota balances are investigated to comprehensively elucidate its therapeutic mechanism. MATERIALS AND METHODS: A mouse model of lung injury was replicated via intranasal instillation of influenza A (H1N1). The efficacy of JZOL was evaluated by pathological sections, lung index, the levels of TNF-α and IFN-γ, and viral load in lung tissue. Its modulation of endogenous metabolites and gut microbiota was assessed using plasma metabolomic technique and 16S rRNA high-throughput sequencing technique. RESULTS: JZOL not only significantly relieved lung inflammation and edema in influenza mice, but also alleviated the disturbance of endogenous metabolites and the imbalance of gut microbiota mainly by regulating glycerophospholipid and fatty acid metabolism and Lactobacillus. The anti-influenza effects of JZOL were gut microbiota dependent, as demonstrated by antibiotic treatment. The altered metabolites were significantly correlated with Lactobacillus and pharmacodynamic indicators, further confirming the reliability of these results. CONCLUSIONS: JZOL attenuates H1N1 influenza infection induced lung injury by regulating lipid metabolism via the modulation of Lactobacillus. The results support the clinical application of JZOL, and are useful to further understand the mechanism of TCM in the treatment of influenza.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , Camundongos , Animais , Humanos , Lesão Pulmonar/tratamento farmacológico , RNA Ribossômico 16S , Reprodutibilidade dos Testes , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Influenza Humana/tratamento farmacológico
7.
J Sep Sci ; 45(23): 4280-4291, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168848

RESUMO

Fructus Psoralea is widely used to treat osteoporosis and skin inflammatory diseases. Because of the side effects on the liver, renal and cardiovascular systems, it is processed to salt-processed Fructus Psoraleae to meet the requirements of clinical use. However, the mechanisms involved in the transformation of the chemical components are unclear. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the chemical profiles of this herbal medicine and the chemical transformation mechanism involved during the salt processing was studied. A total of 83 compounds were identified. Principal component analysis and orthogonal partial least squares discriminate analysis were used to observe the distribution trend of all samples and visualize the difference. Raw and processed Fructus Psoraleae were clearly clustered into two groups. Furthermore, 17 marker compounds were identified as primary contributors to their differences based on t-test analysis (p < 0.01) and orthogonal partial least squares discriminate analysis (variable importance for the projection > 1). Finally, ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was used to evaluate the quality of Fructus Psoraleae by simultaneous analysis of 13 components highly related to efficacy. There were variations in the contents of 13 chemicals of Fructus Psoraleae and salt-processed products. The results of untargeted and targeted metabolomics revealed that salt processing affected the chemical composition of Fructus Psoraleae.


Assuntos
Metabolômica
8.
Front Pharmacol ; 13: 926291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176430

RESUMO

Primary dysmenorrhea (PDM) is a common disorder among women around the world. Two processed products of Curcuma aromatica Salisb. [Zingiberaceae] (CAS) are traditional Chinese medicine (TCM) that have long been used to treat gynecological blood stasis syndrome such as primary dysmenorrhea. The mechanisms and active substances of CAS are still largely unknown. The study aimed to establish a rat model of primary dysmenorrhea which investigates the differences between the pharmacodynamics and mechanisms of raw CAS (RCAS) and vinegar-processed CAS (VCAS). Histopathology, cytokinetics, and metabolomics were adopted to evaluate the anti-blood stasis effect of RCAS and VCAS. In metabolomics, endogenous differential metabolites in plasma, urine, and feces are the essential steps to evaluate the effect of RCAS and VCAS. In this study, the rat model of primary dysmenorrhea was successfully established. After RCAS and VCAS intervention, the uterine tissue morphology of dysmenorrhea model rats was improved, and gland hypertrophy and myometrial hyperplasia were reduced as well as neutrophil content. Compared with the RCAS group, the VCAS group had better uterine morphology, few inflammatory factors, and significantly improved amino acid and lipid metabolism. The aforementioned results support the conclusion that VCAS performed better than RCAS in primary dysmenorrhea and that vinegar processing increases the efficacy of CAS.

9.
Chem Biodivers ; 19(10): e202200361, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36017755

RESUMO

BACKGROUND: Curcumae Radix (CW) is traditionally used to treat dysmenorrhea caused by uterine spasm. However, the changes of its composition and anti-uterine spasms during vinegar processing and the mechanism in treating dysmenorrhea are not clear. OBJECTIVE: To elucidate the changes of anti-uterine spasm and its substance basis, and the mechanism of treating dysmenorrhea before and after vinegar processing. METHODS: The uterine spasm contraction model was established, and the uterine activity and its inhibition rate were calculated to evaluate the differences. The main chemical constituents of CW were quickly analyzed by UPLC-Q-TOF-MS/MS technology, and the differences between them were explored by multivariate statistical analysis. Then, the regulatory network of "active ingredients-core targets-signal pathways" related to dysmenorrhea was constructed by using network pharmacology, and the combination between differential active components and targets was verified by molecular docking. RESULTS: CW extract relaxed the isolated uterine by reducing the contractile tension, amplitude, and frequency. Compared with CW, the inhibitory effect of vinegar products was stronger, and the inhibition rate was 70.08 %. 39 compounds were identified from CW and 13 differential components were screened out (p<0.05). Network pharmacology screened 11 active components and 32 potential targets, involving 10 key pathways related to dysmenorrhea. The results of molecular docking showed that these differentially active components had good binding activity to target. CONCLUSION: It was preliminarily revealed that CW could treat dysmenorrhea mainly through the regulation of inflammatory reaction, relaxing smooth muscle and endocrine by curcumenone, 13-hydroxygermacrone, (+)-cuparene, caryophyllene oxide, zederone, and isocurcumenol.


Assuntos
Curcuma , Medicamentos de Ervas Chinesas , Feminino , Humanos , Ácido Acético/química , Ácido Acético/uso terapêutico , Biologia Computacional , Curcuma/química , Medicamentos de Ervas Chinesas/química , Dismenorreia/tratamento farmacológico , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Espasmo , Espectrometria de Massas em Tandem
10.
Front Pharmacol ; 13: 950749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016561

RESUMO

Curcuma aromatica Salisb. rhizome (CASR) has multifunctional characteristics worldwide and a long history of use as a botanical drug with. Currently, it is often used clinically to treat coronary heart disease (CHD) caused by blood stasis syndrome. However, the therapeutic mechanism of CASR in the treatment of CHD remains poorly understood. In study, the main chemical constituents of CASR were analyzed using UPLC-Q-TOF-MS/MS. Then, its potential therapeutic mechanism against CHD was predicted. Subsequently, pharmacological evaluation was performed using CHD rat model. Finally, a lipidomics approach was applied to explore the different lipid metabolites to verify the regulation of CASR on lipid metabolism disorders in CHD. A total of 35 compounds was identified from CASR. Seventeen active components and 51 potential targets related to CHD were screened by network pharmacology, involving 13 key pathways. In vivo experiments showed that CASR could significantly improve myocardial infarction, blood stasis, and blood lipid levels and regulate the PI3K/AKT/mTOR signaling pathway in CHD rats. Lipidomics further showed that CASR could regulate abnormal sphingolipid, glycerophospholipid, and glycerolipid metabolism in CHD rats. The therapeutic mechanism of CASR against CHD was initially elucidated and included the regulation of lipid metabolism. Its effects may be attributed to active ingredients, such as curzerene, isoprocurcumenol, and (+)-curcumenol. This study reveals the characteristics of multi-component and multi-pathway of CASR in the treatment of CHD, which provides a basis for the follow-up development and utilization of CASR.

11.
J Ethnopharmacol ; 298: 115570, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868549

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese herbal medicine, which has been widely used in traditional Chinese medicine (TCM) for treating intestinal diseases. It is also traditionally used as health product and medicine in Russia and other countries. However, the effect of SC ethanol extract on anti-ulcerative colitis (UC) has not been systematically studied yet. AIM OF THE STUDY: We investigated the protective effects and underlying action mechanisms of SC extract (SCE) for UC treatment. MATERIALS AND METHODS: An animal model of UC induced by dextran sulfate sodium (DSS) was established. After oral administration of SCE, the Disease Activity Index (DAI) was calculated, the length of colon measured, levels of proinflammatory factors determined, and histopathology carried out to assess the therapeutic efficacy of SCE on UC. The effects of SCE on the toll-like receptor 4/nuclear factor-kappa B/nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 inflammasome (TLR4/NF-κB/NLRP3 inflammasome) signaling pathway were evaluated by western blotting. High-throughput sequencing was done to reveal the effect of SCE on the change of the gut microbiota (GM) in mice with DSS-induced colitis. RESULTS: SCE significantly reduced the DAI score, restored colon-length shortening, and ameliorated colonic histopathologic injury in mice with DSS-induced colitis. SCE inhibited the inflammatory response by regulating the TLR4/NF-κB/NLRP3 inflammasome pathway in mice with UC. SCE also maintained gut barrier function by increasing the levels of zonula occludens (ZO)-1 and occludin. 16S rRNA sequencing showed that SCE could reverse the GM imbalance caused by UC. CONCLUSIONS: SCE can ameliorate DSS-induced colitis, and that its effects might be associated with suppression of the TLR4/NF-κB/NLRP3 inflammasome pathway and GM regulation, which may provide significant supports for the development of potential candidates for UC treatment.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Schisandra , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Inflamassomos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3781-3787, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850835

RESUMO

Since the current identification method for Paeoniae Radix Alba is complex in operation and long time-consuming with high requirements for technicians, the present study employed Heracles NEO ultra-fast gas phase electronic nose(E-nose) technology to identify raw and sulfur-fumigated Paeoniae Radix Alba decoction pieces in order to establish a rapid identification method for sulfur-fumigated Paeoniae Radix Alba. The odors of raw Paeoniae Radix Alba and its sulfur-fumigated products were analyzed by Heracles NEO ultra-fast gas phase E-nose to obtain the odor chromatographic information. The chemometric model was established, and the data were processed by principal component analysis(PCA), discriminant function analysis(DFA), soft independent modeling of class analogy(SIMCA), and partial least squares discriminant analysis(PLS-DA). The differential compounds of raw and sulfur-fumigated samples were qualitatively analyzed based on the Kovats retention index and Arochembase. As revealed by the comparison of gas chromatograms of raw and sulfur-fumigated Paeoniae Radix Alba, the heights of several peaks in the chromatograms before and after sulfur fumigation changed significantly. The peak(No.8) produced by ethylbenzene disappeared completely due to sulfonation reaction in the process of sulfur fumigation, indicating that ethylbenzene may be the key component in the identification of Paeoniae Radix Alba and its sulfur-fumigated products. In PCA, DFA, SIMCA, and PLS-DA models, the two types of samples were separated into two different regions, indicating that the established models can clearly distinguish between raw and sulfur-fumigated Paeoniae Radix Alba. The results showed that Heracles NEO ultra-fast gas phase E-nose technology could realize the rapid identification of raw and sulfur-fumigated Paeoniae Radix Alba, which provides a new method and idea for the rapid identification of sulfur-fumigated Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Medicamentos de Ervas Chinesas/química , Nariz Eletrônico , Fumigação/métodos , Paeonia/química , Extratos Vegetais , Enxofre/química
13.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3270-3284, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851121

RESUMO

Coronary heart disease(CHD) is a common cardiovascular disease in clinical practice. Curcumae Rhizoma(CR), an important herbal medicine for breaking blood stasis and resolving mass, is often used for the treatment of CHD caused by blood stasis syndrome. However, the anti-CHD components, targets, and mechanism are still unclear. Therefore, in this study, the chemical components of CR were separated and identified by ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS). Based on the identified components, network pharmacology analysis, including target prediction and functional enrichment, was applied to screen out the main active components against CHD, and the potential mechanism was discussed. Finally, molecular docking was performed to verify the binding between the active components and the targets. The results showed that among the 52 chemical components identified in CR, 28 were related to CHD, involving 75 core targets. The core components included(4S)-4-hydroxy-gweicurculactone, curcumadione, and curcumenone, and the core targets included phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha(PIK3 CA), mitogen-activated protein kinase 1(MAPK1), and mitogen-activated protein kinase 3(MAPK3). In summary, through the active components, such as(4S)-4-hydroxy-gweicurculactone, curcumadione, and curcumenone, CR regulates the nerve repair, vasoconstriction, lipid metabolism, and inflammatory response, thereby exerts therapeutic effect on CHD.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Doença das Coronárias/tratamento farmacológico , Curcuma/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
14.
Zhongguo Zhong Yao Za Zhi ; 47(1): 24-35, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178908

RESUMO

Derived from Curcuma plants, Curcumae Longae Rhizoma, Curcumae Rhizoma, Wenyujin Rhizoma Concisum, and Curcumae Radix are common blood-activating and stasis-resolving medicinals in clinical practice, which are mainly used to treat amenorrhea, dysmenorrhea, chest impediment and heart pain, and rheumatic arthralgia caused by blood stasis block. According to modern research, the typical components in medicinals derived from Curcuma plants, like curcumin, demethoxycurcumin, bisdemethoxycurcumin, curdione, germacrone, curcumol, and ß-elemene, have the activities of hemorheology improvement, anti-platelet aggregation, anti-thrombosis, anti-inflammation, anti-tumor, and anti-fibrosis, thereby activating blood and resolving stasis. However, due to the difference in origin, medicinal part, processing, and other aspects, the efficacy and clinical application are different. The efficacy-related substances behind the difference have not yet been systematically studied. Thus, focusing on the efficacy-related substances, this study reviewed the background, efficacy and clinical application, efficacy-related substances, and "prediction-identification-verification" research method of blood-activating and stasis-resolving medicinals derived from Curcuma plants, which is expected to lay a theoretical basis for the future research on the "similarities and differences" of such medicinals based on integrated evidence chain and to guide the scientific and rational application of them in clinical practice.


Assuntos
Curcumina , Medicamentos de Ervas Chinesas , Curcuma , Raízes de Plantas , Agregação Plaquetária , Rizoma
15.
Zhongguo Zhong Yao Za Zhi ; 47(1): 188-202, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178926

RESUMO

This study aims to study the effective substance and mechanism of Ziziphi Spinosae Semen extract in the treatment of insomnia based on serum metabolomics and network pharmacology. The rat insomnia model induced by p-chlorophenylalanine(PCPA) was established. After oral administration of Ziziphi Spinosae Semen extract, the general morphological observation, pentobarbital sodium-induced sleep test, and histopathological evaluation were carried out. The potential biomarkers of the extract in the treatment of insomnia were screened by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS) combined with multivariate analysis, and the related metabolic pathways were further analyzed. The "component-target-pathway" network was constructed by ultra-high performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry(UHPLC-Q-Exactive-MS/MS) combined with network pharmacology to explore the effective substances and mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. The results of pentobarbital sodium-induced sleep test and histopathological evaluation(hematoxylin and eosin staining) showed that Ziziphi Spinosae Semen extract had good theraputic effect on insomnia. A total of 21 endogenous biomarkers of Ziziphi Spinosae Semen extract in the treatment of insomnia were screened out by serum metabolomics, and the metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and nicotinate and nicotinamide metabolism were obtained. A total of 34 chemical constituents were identified by UHPLC-Q-Exactive-MS/MS, including 24 flavonoids, 2 triterpenoid saponins, 4 alkaloids, 2 triterpenoid acids, and 2 fatty acids. The network pharmacological analysis showed that Ziziphi Spinosae Semen mainly acted on target proteins such as dopamine D2 receptor(DRD2), 5-hydroxytryptamine receptor 1 A(HTR1 A), and alpha-2 A adrenergic receptor(ADRA2 A) in the treatment of insomnia. It was closely related to neuroactive ligand-receptor interaction, serotonergic synapse, and calcium signaling pathway. Magnoflorine, N-nornuciferine, caaverine, oleic acid, palmitic acid, coclaurine, betulinic acid, and ceanothic acid in Ziziphi Spinosae Semen may be potential effective compounds in the treatment of insomnia. This study revealed that Ziziphi Spinosae Semen extract treated insomnia through multiple metabolic pathways and the overall correction of metabolic disorder profile in a multi-component, multi-target, and multi-channel manner. Briefly, this study lays a foundation for further research on the mechanism of Ziziphi Spinosae Semen in treating insomnia and provides support for the development of innovative Chinese drugs for the treatment of insomnia.


Assuntos
Medicamentos de Ervas Chinesas , Distúrbios do Início e da Manutenção do Sono , Ziziphus/química , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Metabolômica , Farmacologia em Rede , Ratos , Sementes/química , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Espectrometria de Massas em Tandem
16.
Food Chem ; 374: 131658, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34896949

RESUMO

Vinegar is a kind of traditional fermented food, there are significant variances in quality and flavor due to differences in raw ingredients and processes. The quality assessment and flavor characteristics of 69 vinegar samples with 5 brewing processes were analyzed by physicochemical parameters combined with flash gas chromatography (GC) e-nose. The evaluation system of quality and the detection method of flavor profile were established. 17 volatile flavor compounds and potential flavor differential compounds of each brewing process were identified. The artificial neural network (ANN) analysis model was established based on the physicochemical parameters and the analysis of flash GC e-nose. Although the physicochemical parameters were more intuitive in quality evaluating, the flash GC e-nose could better reflect the flavor characteristics of vinegar samples and had better fitting, prediction and discrimination ability, the correct rates of training and prediction of flash GC e-nose trained ANN model were 98.6% and 96.7%, respectively.


Assuntos
Nariz Eletrônico , Compostos Orgânicos Voláteis , Ácido Acético , Cromatografia Gasosa , Cromatografia Gasosa-Espectrometria de Massas , Redes Neurais de Computação , Odorantes/análise , Compostos Orgânicos Voláteis/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-34933255

RESUMO

Curcuma wenyujin Y.H. Chen et C. Ling rhizome (also called EZhu in China) has long been used as plant medicine for its traditional effect on promoting blood circulation and remove blood stasis. However, the active components of EZhu are still unclear at present. This research is managed to investigate the pharmacodynamics material basis on removing blood stasis of EZhu by exploring the spectrum-effect relationship between UPLC-Q/TOF-MS fingerprints and pharmacologic actions. Hemorheology and related functional parameters were detected to evaluate the pharmacologic actions of EZhu. Relative content Changes of components in rat plasma were detected by UPLC-Q/TOF-MS. A compound-target-pathway network was built to predict the pharmacological activity of components in plasma. Then, bivariate correlation analysis (BCA) was used to explore the correlation degree between components in plasma and pharmacologic actions of EZhu. In UPLC-Q/TOF-MS fingerprints of rat plasma, 10 prototype components were identified. BCA results show that 8 components were concerned with the pharmacological activity for treating blood stasis syndrome (BSS) in varying degrees (R > 0.5, P < 0.05). Among them, zedoarofuran and curzerenone have shown correlation with more pharmacological indicators. The network predicted that 80 targets were closely related to 10 components, in which 48 targets were connected with 159 metabolic pathways including arachidonic acid metabolism, sphingolipid signaling pathway, and linoleic acid metabolism. Overall, this study provided a scientific basis for TCM quality control to ensure its safety and efficacy.


Assuntos
Curcuma/química , Medicamentos de Ervas Chinesas , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Hemorreologia/efeitos dos fármacos , Masculino , Farmacologia em Rede , Compostos Fitoquímicos/sangue , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Ratos , Ratos Sprague-Dawley
18.
Front Nutr ; 9: 1035623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761989

RESUMO

Introduction: Crataegi fructus (CF) is an edible and medicinal functional food used worldwide that enhances digestion if consumed in the roasted form. The odour of CF, as a measure of processing degree during roasting, significantly changes. However, the changes remain unclear, but are worth exploring. Methods: Herein, the variations in volatile flavour compounds due to CF roasting were investigated using an electronic nose (E-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). Results: A total of 54 components were identified by GC-MS. Aldehydes, ketones, esters, and furans showed the most significant changes. The Maillard reaction, Strecker degradation, and fatty acid oxidation and degradation are the main reactions that occur during roasting. The results of grey relational analysis (GRA) showed that 25 volatile compounds were closely related to odour (r > 0.9). Finally, 9 volatile components [relative odour activity value, (ROAV) ≥ 1] were confirmed as key substances causing odour changes. Discussion: This study not only achieves the objectification of odour evaluation during food processing, but also verifies the applicability and similarity of the E-nose and HS-GC-MS.

19.
Phytomedicine ; 86: 153558, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33866197

RESUMO

BACKGROUND: Curcumae Rhizoma (CR) has a clinical efficacy in activating blood circulation to dissipate blood stasis and has been used for the clinical treatment of qi stagnation and blood stasis (QSBS) primary dysmenorrhea for many years. However, its molecular mechanism is unknown. OBJECTIVE: The present study aimed to demonstrate the multicomponent, multitarget and multipathway regulatory molecular mechanisms of CR in the treatment of QSBS primary dysmenorrhea. METHODS: Observations of pathological changes in uterine tissues and biochemical assays were used to confirm that a rat model was successfully established and that CR was effective in the treatment of QSBS primary dysmenorrhea. The main active components of CR in rat plasma were identified and screened by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). The component-target-disease network and protein-protein interaction (PPI) network of CR were constructed by a network pharmacology approach. Then, we performed Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was adopted to verify the interactions between the core components and targets of CR to confirm the accuracy of the network pharmacology prediction results. Furthermore, we evaluated the bioactive constituents of CR and molecular mechanism of by which CR promote blood circulation and remove blood stasis via platelet tests in vivo and in vitro and Western blot analysis. RESULTS: The results of HE staining and biochemical assays of PGF2α, TXB2 and Ca2+ showed that CR was effective in the treatment of QSBS primary dysmenorrhea. A total of 36 active components were identified in CR, and 329 common targets were obtained and used to construct the networks. Of these, 14 core components and 10 core targets of CR in the treatment of primary dysmenorrhea were identified. The GO and KEGG enrichment analyses revealed that the common targets were involved in multiple signaling pathways, including the calcium, cAMP, MAPK, and PI3K-Akt signaling pathways, as well as platelet activation, which is closely related to platelet aggregation. The molecular docking results showed that the 14 core components and 10 core targets could bind spontaneously. Two core targets (MAPK1 and CCR5) and 7 core components (Isoprocurcumenol, Curcumadione, Epiprocurcumenol, (+)-Curdione, Neocurdione, Procurcumenol, and 13-Hydroxygermacrone) were closely related to CR in the treatment of primary dysmenorrhea. Furthermore, the in vivo platelet test showed that CR clearly inhibited platelet aggregation. Five core components ((+)-Curdione, Neocurdione, Isoprocurcumenol, Curcumadione and Procurcumenol) obviously inhibited platelet aggregation in vitro. In addition, based on the relationships among the signaling pathways, we confirmed that CR can effectively inhibit the expression of MAPK and PI3K-Akt signaling pathway-related proteins and decrease the protein expression levels of ERK, JNK, MAPK, PI3K, AKT and CCR5, thereby inhibiting platelet aggregation. CONCLUSION: This study demonstrated the bioactive constituents and mechanisms of CR in promoting blood circulation and removing blood stasis and its multicomponent, multitarget and multipathway treatment characteristics in primary dysmenorrhea. The results provide theoretical evidence for the development and utilization of CR.


Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Dismenorreia/tratamento farmacológico , Animais , Cálcio/metabolismo , Cromatografia Líquida de Alta Pressão , Dinoprosta/metabolismo , Modelos Animais de Doenças , Dismenorreia/metabolismo , Feminino , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Agregação Plaquetária/efeitos dos fármacos , Mapas de Interação de Proteínas , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/fisiopatologia
20.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1393-1400, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33787137

RESUMO

L~*, a~* and b~* values of prepared slices of Curcumae Rhizoma were measured by spectrophotometer. SPSS 21.0 was used for discriminant analysis to establish the color range and mathematical prediction model of prepared slices of Curcumae Rhizoma. The values of L~*, a~* and b~* of kwangsiensis ranged from 58.09-62.40, 4.53-5.66 and 23.61-24.29, while the values of L~*, a~* and b~* of phaeocaulis were between 64.02-70.71,-0.89-4.13 and 44.59-54.52, respectively. The values of L~*, a~* and b~* of wenyujin were 68.55-70.99,-0.11-1.47 and 28.26-32.19, respectively. The mathematical prediction model was proved to be able to realize 100% identification of Curcumae Rhizome of different origins through original and cross validation and external samples validation. A dual wavelength HPLC was established; the contents of 9 sesquiterpenoids and 3 Curcumae Rhizomes were determined simultaneously; and the contents of Curcumae Rhizome of different origins were determined. The results showed that kwangsiensis had higher contents of neocurdione, ß-elemene and isocurcumaenol, phaeocaulis curcumin, furadienone, demethoxycurcumin and curcumin; and wenyujin mainly contained curdione, furadienes and guimarone. Pearson correlation analysis on L~*, a~*, b~* value and content of 12 components showed that curcumin, furadienone, demethoxycurcumin and curcumin had a significant positive correlation with b~* value(P<0.01). There was a significant negative correlation between neocurdione, ß-elemene and isocurcumaenol and L~* value(P<0.01). Curdione, furadienes and guimarone were significantly correlated with L~* value(P<0.01),indicating that the appearance co-lor of Curcumae Rhizoma could reflect the change of the content of the internal components. This study provided reference for the rapid recognition of Curcumae Rhizoma and the establishment of quality evaluation system.


Assuntos
Curcumina , Rizoma , Cromatografia Líquida de Alta Pressão , Cor , Curcuma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...