Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(6): 3869-3888, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867788

RESUMO

In this study, a dual-mode full-field optical coherence tomography (FFOCT) was customized for label-free static and dynamic imaging of corneal tissues, including donor grafts and pathological specimens. Static images effectively depict relatively stable structures such as stroma, scar, and nerve fibers, while dynamic images highlight cells with active intracellular metabolism, specifically for corneal epithelial cells. The dual-mode images complementarily demonstrate the 3D microstructural features of the cornea and limbus. Dual-modal imaging reveals morphological and functional changes in corneal epithelial cells without labeling, indicating cellular apoptosis, swelling, deformation, dynamic signal alterations, and distinctive features of inflammatory cells in keratoconus and corneal leukoplakia. These findings propose dual-mode FFOCT as a promising technique for cellular-level cornea and limbus imaging.

2.
Ther Adv Chronic Dis ; 14: 20406223231170146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152350

RESUMO

Ocular imaging plays an irreplaceable role in the evaluation of eye diseases. Developing cellular-resolution ophthalmic imaging technique for more accurate and effective diagnosis and pathogenesis analysis of ocular diseases is a hot topic in the cross-cutting areas of ophthalmology and imaging. Currently, ocular imaging with traditional optical coherence tomography (OCT) is limited in lateral resolution and thus can hardly resolve cellular structures. Conventional OCT technology obtains ultra-high resolution at the expense of a certain imaging range and cannot achieve full field of view imaging. In the early years, Time-domain full-field OCT (TD-FF-OCT) has been mainly used for ex vivo ophthalmic tissue studies, limited by the low speed and low full-well capacity of existing two-dimensional (2D) cameras. The recent improvements in system design opened new imaging possibilities for in vivo applications thanks to its distinctive optical properties of TD-FF-OCT such as a spatial resolution almost insensitive to aberrations, and the possibility to control the curvature of the optical slice. This review also attempts to look at the future directions of TD-FF-OCT evolution, for example, the potential transfer of the functional-imaging dynamic TD-FF-OCT from the ex vivo into in vivo use and its expected benefit in basic and clinical ophthalmic research. Through non-invasive, wide-field, and cellular-resolution imaging, TD-FF-OCT has great potential to be the next-generation imaging modality to improve our understanding of human eye physiology and pathology.

3.
Front Cell Dev Biol ; 11: 1195873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250897

RESUMO

Purpose: To develop a computational method for oxygen-saturation-related functional parameter analysis of retinal vessels based on traditional color fundus photography, and to explore their characteristic alterations in type 2 diabetes mellitus (DM). Methods: 50 type 2 DM patients with no-clinically detectable retinopathy (NDR) and 50 healthy subjects were enrolled in the study. An optical density ratio (ODR) extraction algorithm based on the separation of oxygen-sensitive and oxygen-insensitive channels in color fundus photography was proposed. With precise vascular network segmentation and arteriovenous labeling, ODRs were acquired from different vascular subgroups, and the global ODR variability (ODRv) was calculated. Student's t-test was used to analyze the differences of the functional parameters between groups, and regression analysis and receiver operating characteristic (ROC) curves were used to explore the discrimination efficiency of DM patients from healthy subjects based on these functional parameters. Results: There was no significant difference in the baseline characteristics between the NDR and healthy normal groups. The ODRs of all vascular subgroups except the micro venule were significantly higher (p<0.05, respectively) while ODRv was significantly lower (p<0.001) in NDR group than that in healthy normal group. In the regression analysis, the increased ODRs except micro venule and decreased ODRv were significantly correlated with the incidence of DM, and the C-statistic for discrimination DM with all ODR is 0.777 (95% CI 0.687-0.867, p<0.001). Conclusion: A computational method to extract the retinal vascular oxygen-saturation-related optical density ratios (ODRs) with single color fundus photography was developed, and increased ODRs and decreased ODRv of retinal vessels could be new potential image biomarkers of DM.

4.
Bioengineering (Basel) ; 9(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35324810

RESUMO

An organoid is a miniaturized and simplified in vitro model with a similar structure and function to a real organ. In recent years, the use of organoids has increased explosively in the field of growth and development, disease simulation, drug screening, cell therapy, etc. In order to obtain necessary information, such as morphological structure, cell function and dynamic signals, it is necessary and important to directly monitor the culture process of organoids. Among different detection technologies, imaging technology is a simple and convenient choice and can realize direct observation and quantitative research. In this review, the principle, advantages and disadvantages of imaging technologies that have been applied in organoids research are introduced. We also offer an overview of prospective technologies for organoid imaging. This review aims to help biologists find appropriate imaging techniques for different areas of organoid research, and also contribute to the development of organoid imaging systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...