Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 316: 121030, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321727

RESUMO

Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and ß-glucan. The highest fructan and ß-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of ß-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and ß-glucan content, and larger building blocks in amylopectin.


Assuntos
Hordeum , beta-Glucanas , Amilopectina/química , Hordeum/química , Seleção Artificial , Estrutura Molecular , Amido/química , Amilose/química
2.
Sci Rep ; 12(1): 19151, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351972

RESUMO

High fructan content in the grain of cereals is an important trait in agriculture such as environmental resilience and dietary fiber food production. To understand the mechanism in determining final grain fructan content and achieve high fructan cereal, a cross breeding strategy based on fructan synthesis and hydrolysis activities was set up and have achieved barley lines with 11.8% storage fructan in the harvested grain. Our study discovered that high activity of fructan hydrolysis at later grain developmental stage leads to the low fructan content in mature seeds, simultaneously increasing fructan synthesis at early stage and decreasing fructan hydrolysis at later stage through crossing breeding is an efficient way to elevate grain diet-fiber content. A good correlation between fructan and beta glucans was also discovered with obvious interest. Field trials showed that the achieved high fructan barley produced over seven folds higher fructan content than control barley and pull carbon-flux to fructan through decreasing fructan hydrolysis without disruption starch synthesis will probably not bring yield deficiency.


Assuntos
Hordeum , Frutanos , Hidrólise , Melhoramento Vegetal , Fibras na Dieta , Grão Comestível , Dieta
3.
Front Plant Sci ; 13: 991074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340390

RESUMO

Black shank disease caused by Phytophthora nicotianae is one of the most important diseases in tobacco worldwide and can result in a devastating loss in tobacco cultivation. Many efforts have been carried out to identify the chromosome segment from Nicotiana plumbaginifolia containing a resistance locus carrying a gene named Php; however, the Php gene has not been cloned, and knowledge of the potential mechanism of the Php gene in the resistant lines is limited. To further characterize the resistance mechanism of the Php gene, we first used the resistant line "RBST" and the susceptible cultivar "Honghuadajinyuan" (HD) to obtain the near-isogenic line RBS89 containing the Php gene from RBST. RBS89 showed high resistance to black shank disease. Transcriptomic and iTRAQ analyses were applied to explore the potential defense mechanisms in RBS89 plants in comparison with HD plants with or without inoculation. Many differentially expressed genes (DEGs) and proteins were identified, and some pathogenesis-related (PR) proteins were extensively abundant in the RBS89 plants when compared with the HD plants in response to black shank disease. Importantly, overexpression of the PR gene NtPR-1B in HD plants improved the resistance of tobacco plants to black shank disease, indicating that NtPR-1B and Php genes might have similar roles in protecting tobacco from black shank disease. However, the relationship between NtPR-1B and Php genes requires further analysis. Therefore, our study provides valuable information for breeding tobacco cultivars with black shank disease resistance and sheds light on the defense mechanism of black shank disease in tobacco for enhancing Phytophthora resistance in other Solanaceae crops.

4.
Plant Divers ; 43(6): 510-522, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024520

RESUMO

The bHLH transcription factors play pivotal roles in plant growth and development, production of secondary metabolites and responses to various environmental stresses. Although the bHLH genes have been well studied in model plant species, a comprehensive investigation of the bHLH genes is required for tobacco with newly obtained high-quality genome. In the present study, a total of 309 NtbHLH genes were identified and can be divided into 23 subfamilies. The conserved amino acids which are essential for their function were predicted for the NtbHLH proteins. Moreover, the NtbHLH genes were conserved during evolution through analyzing the gene structures and conserved motifs. A total of 265 NtbHLH genes were localized in the 24 tobacco chromosomes while the remained 44 NtbHLH genes were mapped to the scaffolds due to the complexity of tobacco genome. Moreover, transcripts of NtbHLH genes were obviously tissue-specific expressed from the gene-chip data from 23 tobacco tissues, and expressions of 20 random selected NtbHLH genes were further confirmed by quantitative real-time PCR, indicating their potential functions in the plant growth and development. Importantly, overexpressed NtbHLH86 gene confers improve drought tolerance in tobacco indicating that it might be involved in the regulation of drought stress. Therefore, our findings here provide a valuable information on the characterization of NtbHLH genes and further investigation of their functions in tobacco.

5.
Front Plant Sci ; 11: 329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425956

RESUMO

There is an urgent demand for low-arsenic rice in the global market, particularly for consumption by small children. Soils in Uppsala, Sweden, contain low concentrations of arsenic (As). We hypothesize that if certain japonica paddy rice varieties can adapt to the cold climate and long day length in Uppsala and produce normal grains, such a variety could be used for organic production of low-arsenic rice for safe rice consumption. A japonica paddy rice variety, "Heijing 5," can be cultivated in Uppsala, Sweden, after several years' adaptation, provided that the rice plants are kept under a simple plastic cover when the temperature is below 10°C. Uppsala-adapted "Heijing 5" has a low concentration of 0.1 mg per kg and high protein content of 12.6% per dry weight in brown rice grain, meaning that it thus complies with all dietary requirements determined by the EU and other countries for small children. The high protein content is particularly good for small children in terms of nutrition. Theoretically, Uppsala-adapted "Heijing 5" can produce a yield of around 5100 kg per ha, and it has a potential for organic production. In addition, we speculate that cultivation of paddy rice can remove nitrogen and phosphorus from Swedish river water and reduce nutrient loads to the Baltic Sea and associated algae blooms.

6.
Mol Plant ; 10(12): 1556-1570, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126994

RESUMO

Sequential carbohydrate synthesis is important for plant survival because it guarantees energy supplies for growth and development during plant ontogeny and reproduction. Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding this coordinated starch and fructan synthesis and unraveling how plants allocate photosynthates and prioritize different carbohydrate synthesis for survival could lead to improvements to cereals in agriculture for the purposes of greater food security and production quality. Here, we report a system from a single gene in barley employing two alternative promoters, one intronic/exonic, to generate two sequence-overlapping but functionally opposing transcription factors, in sensing sucrose, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling. The system employs an autoregulatory mechanism in perceiving a sucrose-controlled trans activity on one promoter and orchestrating the coordinated starch and fructan synthesis by competitive transcription factor binding on the other promoter. As a case in point for the physiological roles of the system, we have demonstrated that this multitasking system can be exploited in breeding barley with tailored amounts of fructan to produce healthy food ingredients. The identification of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, adds to the complexity of plant genomes.


Assuntos
Frutanos/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Metabolismo dos Carboidratos/genética , Regulação da Expressão Gênica de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...