Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 14(682)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975980

RESUMO

Members of the RAF family of serine-threonine kinases are intermediates in the mitogen-activated protein kinase and extracellular signal-regulated kinase (MAPK-ERK) signaling pathway, which controls key differentiation processes in B cells. By analyzing mice with B cell-specific deletion of Raf1, Braf, or both, we showed that Raf-1 and B-Raf acted together in mediating the positive selection of pre-B and transitional B cells as well as in initiating plasma cell differentiation. However, genetic or chemical inactivation of RAFs led to increased ERK phosphorylation in mature B cells. ERK activation in the absence of Raf-1 and B-Raf was mediated by multiple RAF-independent pathways, with phosphoinositide 3-kinase (PI3K) playing an important role. Furthermore, we found that ERK phosphorylation strongly increased during the transition from activated B cells to pre-plasmablasts. This increase in ERK phosphorylation did not occur in B cells lacking both Raf-1 and B-Raf, which most likely explains the partial block of plasma cell differentiation in mice lacking both RAFs. Collectively, our data indicate that B-Raf and Raf-1 are not necessary to mediate ERK phosphorylation in naïve or activated B cells but are essential for mediating the marked increase in ERK phosphorylation during the transition from activated B cells to pre-plasmablasts.


Assuntos
Linfócitos B/citologia , MAP Quinases Reguladas por Sinal Extracelular , Plasmócitos/citologia , Proteínas Proto-Oncogênicas c-raf , Animais , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases , Fosforilação , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo
2.
Cancer Res ; 74(16): 4318-28, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24938766

RESUMO

CD40, a member of the TNF receptor family, is expressed on all mature B cells and on most B-cell lymphomas. Recently, we have shown that constitutive activation of CD40 signaling in B cells induced by a fusion protein consisting of the transmembrane part of the Epstein-Barr viral latent membrane protein 1 (LMP1) and the cytoplasmic part of CD40 (LMP1/CD40) drives B-cell lymphoma development in transgenic mice. Because LMP1/CD40-expressing B cells showed an upregulation of CD19, we investigated CD19's function in CD40-driven B-cell expansion and lymphomagenesis. Here, we demonstrate that ablation of CD19 in LMP1/CD40 transgenic mice resulted in a severe loss and reduced lifespan of mature B cells and completely abrogated development of B-cell lymphoma. CD19 is localized to lipid rafts and constitutively activated by the LMP1/CD40 fusion protein in B cells. We provide evidence that the improved survival and malignant transformation of LMP1/CD40-expressing B cells are dependent on activation of the MAPK Erk that is mediated through CD19 in a PI3K-dependent manner. Our data suggest that constitutively active CD40 is dependent on CD19 to transmit survival and proliferation signals. Moreover, we detected a similarly functioning prosurvival pathway involving phosphorylated CD19 and PI3K-dependent Erk phosphorylation in human diffuse large B-cell lymphoma cell lines. Our data provide evidence that CD19 plays an important role in transmitting survival and proliferation signals downstream of CD40 and therefore might be an interesting therapeutic target for the treatment of lymphoma undergoing chronic CD40 signaling.


Assuntos
Antígenos CD19/imunologia , Linfócitos B/imunologia , Antígenos CD40/imunologia , Linfoma/imunologia , Animais , Linfócitos B/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Humanos , Ativação Linfocitária/imunologia , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos Transgênicos , Fosforilação
3.
Int J Cancer ; 135(5): 1153-64, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24500882

RESUMO

Adoptive T cell therapy is an important additional treatment option for malignant diseases resistant to chemotherapy. Using a murine high-grade B cell lymphoma model, we have addressed the question whether the B cell differentiation antigen CD19 can act as rejection antigen. CD19(-/-) mice inoculated with CD19(+) B cell lymphoma cells showed higher survival rates than WT mice and were protected against additional tumor challenge. T cell depletion prior to tumor transfer completely abolished the protective response. By heterotypic vaccination of CD19(-/-) mice against murine CD19, survival after tumor challenge was significantly increased. To define protective epitopes within the CD19 molecule, T cells collected from mice that had survived the tumor transfer were analyzed for IFNγ secretion in response to CD19-derived peptides. The majority of mice exhibited a CD4(+) T cell response to CD19 peptide 27, which was the most dominant epitope after CD19 vaccination. A peptide 27-specific CD4(+) T cell line protected CD19(-/-) mice against challenge with CD19(+) lymphoma and also cured a significant proportion of WT mice from recurrent disease in a model of minimal residual disease after chemotherapy. In conclusion, our data highlight CD19-specific CD4(+) T cells for adoptive T cell therapy of B cell lymphomas.


Assuntos
Antígenos CD19/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Linfoma de Células B/terapia , Animais , Antígenos CD19/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Depleção Linfocítica , Linfoma de Células B/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Células Tumorais Cultivadas
4.
PLoS One ; 7(7): e42021, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860051

RESUMO

BACKGROUND: A given tumor is usually dependent on the oncogene that is activated in the respective tumor entity. This phenomenon called oncogene addiction provides the rationale for attempts to target oncogene products in a therapeutic manner, be it by small molecules, by small interfering RNAs (siRNA) or by antigen-specific T cells. As the proto-oncogene product is required also for the function of normal cells, this raises the question whether there is a therapeutic window between the adverse effects of specific inhibitors or T cells to normal tissue that may limit their application, and their beneficial tumor-specific therapeutic action. To address this crucial question, suitable mouse strains need to be developed, that enable expression of the human proto-oncogene not only in tumor but also in normal cells. The aim of this work is to provide such a mouse strain for the human proto-oncogene product c-MYC. PRINCIPAL FINDINGS: We generated C57BL/6-derived embryonic stem cells that are transgenic for a humanized c-Myc gene and established a mouse strain (hc-Myc) that expresses human c-MYC instead of the murine ortholog. These transgenic animals harbor the humanized c-Myc gene integrated into the endogenous murine c-Myc locus. Despite the lack of the endogenous murine c-Myc gene, homozygous mice show a normal phenotype indicating that human c-MYC can replace its murine ortholog. CONCLUSIONS: The newly established hc-Myc mouse strain provides a model system to study in detail the adverse effects of therapies that target the human c-MYC protein. To mimic the clinical situation, hc-Myc mice may be cross-bred to mice that develop tumors due to overexpression of human c-MYC. With these double transgenic mice it will be possible to study simultaneously the therapeutic efficiency and adverse side effects of MYC-specific therapies in the same mouse.


Assuntos
Genes myc , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Southern Blotting , Células-Tronco Embrionárias , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Reação em Cadeia da Polimerase , Proto-Oncogene Mas
5.
Physiol Genomics ; 38(1): 7-15, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19293330

RESUMO

Cardiomyocytes derived from pluripotent embryonic stem cells (ESC) have the advantage of providing a source for standardized cell cultures. However, little is known on the regulation of the genome during differentiation of ESC to cardiomyocytes. Here, we characterize the transcriptome of the mouse ESC line CM7/1 during differentiation into beating cardiomyocytes and compare the gene expression profiles with those from primary adult murine cardiomyocytes and left ventricular myocardium. We observe that the cardiac gene expression pattern of fully differentiated CM7/1-ESC is highly similar to adult primary cardiomyocytes and murine myocardium, respectively. This finding is underlined by demonstrating pharmacological effects of catecholamines and endothelin-1 on ESC-derived cardiomyocytes. Furthermore, we monitor the temporal changes in gene expression pattern during ESC differentiation with a special focus on transcription factors involved in cardiomyocyte differentiation. Thus, CM7/1-ESC-derived cardiomyocytes are a promising new tool for functional studies of cardiomyocytes in vitro and for the analysis of the transcription factor network regulating pluripotency and differentiation to cardiomyocytes.


Assuntos
Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Miocárdio/metabolismo , Recombinação Genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...