Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(5): e0025723, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067417

RESUMO

Environmental surfaces can serve as reservoirs for pathogens and antimicrobial-resistant (AMR) bacteria in healthcare settings. Although active surveillance programs are used in veterinary and human healthcare, unconventional settings like zoological facilities are often overlooked, even though antimicrobials are used to maintain the health of their animal collections. Here, we used electrostatic cloths to conduct active environmental surveillance over a 2-year period at two zoological institutions to determine contamination prevalence of human-only and mixed animal-human touch environments with AMR bacteria. We recovered Enterobacterales isolates that expressed quinolone resistance, an AmpC-like phenotype, and an extended-spectrum ß-lactamase phenotype from 144 (39%), 141 (38.2%), and 72 (19.5%) of the environmental samples, respectively. The zoological institutions, areas and exhibits within the zoological facility, and sampling surface type affected the odds of recovering AMR bacteria from the environment. Three carbapenemase-producing Enterobacter cloacae complex ST171 isolates recovered from one zoological facility harbored an IncH12 plasmid with a Tn4401b-KPC-4 transposon conferring multidrug resistance. One isolate maintained three tandem repeats of a Tn4401b-KPC-4 element on an IncHI2 plasmid, although this isolate was susceptible to the four carbapenem drugs tested. These three isolates and their IncH12 plasmids shared significant genomic similarity with two E. cloacae complex isolates recovered from canine patients at a regional veterinary hospital during year 2 of this study. Our results indicated that surface environments at zoological institutions can serve as reservoirs for AMR bacteria and their genes and have implications for animal and public health. IMPORTANCE Environmental surfaces can be a source of antimicrobial-resistant (AMR) bacteria that pose a risk to human and animal health. Zoological institutions are unique environments where exotic animals, staff, and visitors intermingle and antimicrobials are used to maintain animal health. However, zoological environments are often overlooked as reservoirs of AMR bacteria. Here, we show that zoological environments can serve as reservoirs of fluoroquinolone-resistant and extended-spectrum cephalosporin-resistant bacteria. In addition, we isolated three carbapenemase-producing Enterobacter cloacae complex strains carrying blaKPC-4, including one with a unique, tandem triplicate of the Tn4401b-KPC-4 element. Comparative whole genomics of these isolates with two E. cloacae complex isolates from patients at a regional veterinary hospital highlighted the possibility of local KPC-4 spread between animal environments. Our results suggest that environments at zoological institutions serve as reservoirs for AMR bacteria and pose a hypothetical One Health risk to the public, staff, and the wild animal populations in captivity.


Assuntos
Enterobacter cloacae , Infecções por Enterobacteriaceae , Humanos , Animais , Cães , Enterobacter cloacae/genética , Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/microbiologia , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
J Environ Manage ; 265: 110529, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421557

RESUMO

Wastewater flows from metropolitan areas, especially those with healthcare inputs, can serve as transport reservoirs for the dissemination of clinically-relevant antimicrobial resistant bacteria (ARB) such as carbapenem- (CR) and colistin-resistant (CoR) strains. Pulsed electric field (PEF) is an emerging wastewater management tool for reducing bacterial loads without generating environmentally harmful byproducts, but it's ability to reduce ARB and their genetic determinants is not well reported. We collected 86, 10-L raw wastewater influent samples from a large metropolitan wastewater treatment plant in Columbus, Ohio and subjected them to low (34 kV cm-1 for 67 µsec) and high (36 kV cm-1 for 89 µsec) PEF treatment. We quantified the PEF effectiveness by measuring concentrations of total coliform bacteria, CR and CoR bacteria, and the epidemic carbapenemase gene, blaKPC, before and after PEF treatment. Utilizing marginal linear regression models with generalized estimating equations, we observed that low and high PEF treatment resulted in a 1.94 (95% CI 2.06-1.81; P < 0.001) and 2.32 (95% CI 2.46-2.18; P < 0.001) log reduction of total coliform bacteria concentrations, respectively. Low and high PEF treatment produced similar log reductions between CR E. coli (2.01 (95% CI 2.15-1.86; P < 0.001); 2.14 (95% CI: 5.30-4.61; P < 0.001)) and CR Enterobacteriaceae concentrations (1.55 (95% CI 1.70-1.41; P < 0.001); 1.86 (95% CI 2.05-1.68; P < 0.001)), and resulted in a 1.15 log (95% CI 1.38-0.93, P < 0.001) and 1.28 log (95% CI 1.54-1.03, P < 0.001) reduction of absolute blaKPC concentrations. Log CoR E. coli concentrations were reduced by 2.47 (95% CI 2.78-2.15; P < 0.001) and 2.52 (95% CI 2.91-2.15; P < 0.001) and CoR Enterobacteriaceae by 2.24 (95% CI 2.52-1.95; P < 0.001) and 2.50 (95% CI 2.89-2.11; P < 0.001) following low and high PEF application. PEF can be applied for wastewater management as an independent treatment method, particularly at critical control points, such as an on-site management of wastewater from hospitals or other healthcare facilities, or in series with other conventional methods to reduce total bacterial loads and concentrations of clinically-relevant ARB.


Assuntos
Colistina , Microbiota , Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Escherichia coli , Ohio , Águas Residuárias , beta-Lactamases
3.
PLoS One ; 14(6): e0218650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242271

RESUMO

Carbapenemase-producing bacteria (CPB) are rare, multidrug resistant organisms most commonly associated with hospitalized patients. Metropolitan wastewater treatment plants (WWTP) treat wastewater from large geographic areas which include hospitals and may serve as epidemiologic reservoirs for the maintenance or expansion of CPB that originate from hospitals and are ultimately discharged in treated effluent. However, little is known about the potential impact of these WWTP CPB on the local surface water and their risk to the public health. In addition, CPB that are present in surface water may ultimately disseminate to intensively-managed animal agriculture facilities where there is potential for amplification by extended-spectrum cephalosporins. To better understand the role of WWTPs in the dissemination of CPB in surface waters, we obtained samples of treated effluent, and both upstream and downstream nearby surface water from 50 WWTPs throughout the US. A total of 30 CPB with clinically-relevant genotypes were recovered from 15 WWTPs (30%) of which 13 (50%) serviced large metropolitan areas and 2 (8.3%) represented small rural populations (P < 0.05). Recovery of CPB was lowest among WWTPs that utilized ultraviolet radiation for primary disinfection (12%), and higher (P = 0.11) for WWTPs that used chlorination (42%) or that did not utilize disinfection (50%). We did not detect a difference in CPB recovery by sampling site, although fewer CPB were detected in upstream (8%) compared to effluent (20%) and downstream (18%) samples. Our results indicate that WWTP effluent and nearby surface waters in the US are routinely contaminated with CPB with clinically important genotypes including those producing Klebsiella pneumoniae carbapenemase (KPC) and New Delhi metallo-beta-lactamase (NDM). This is a concern for both public health and animal agriculture because introduction of CPB into intensively managed livestock populations could lead to their amplification and foodborne dissemination.


Assuntos
Aeromonas/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Águas Residuárias/microbiologia , Aeromonas/genética , Animais , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Reservatórios de Doenças/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Água Subterrânea/microbiologia , Hospitais , Humanos , Resíduos de Serviços de Saúde , Estados Unidos , Purificação da Água
4.
Foodborne Pathog Dis ; 15(9): 583-588, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29874103

RESUMO

Antimicrobial resistant bacteria in retail meat pose a health hazard to the public, as does contamination of these products with Salmonella. Our aim was to determine the prevalence of Salmonella as well as Escherichia coli expressing AmpC and extended-spectrum beta-lactamase (ESBL) resistance phenotypes contaminating broiler transport cages and fresh, retail ground chicken meat. Sterile gauze sponges were used to collect duplicate cage floor samples from transport trailers that deliver market-ready birds to a single organic poultry-processing facility. With the exception of the first visit (n = 25), 50 duplicate cage floor samples were collected using moistened sterile gauze sponges on each of nine weekly visits during May, June, and July 2013. Additionally, fresh, retail ground chicken meat was sampled at each weekly visit from an on-site retail store located at the same processing facility. A total of 425 cage swabs and 72 ground chicken aliquots from 24 retail packages were collected and screened for the presence of Salmonella as well as E. coli expressing resistance to extended-spectrum cephalosporins using selective culture. We recovered Salmonella from 26.1% of cage swab samples and 2.8% of retail meat samples. E. coli expressing AmpC and ESBL resistance phenotypes were recovered from 84.9% and 22.6% of cage swabs and 77.8% and 11.1% of fresh, retail ground meat samples, respectively. Our results suggest that transport cages could potentially act as a source of broiler exposure to both Salmonella and enteric bacteria resistant to important antimicrobial drugs as they are transported for entry into the food supply as fresh, retail meat products.


Assuntos
Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/isolamento & purificação , Contaminação de Alimentos/análise , Salmonella/isolamento & purificação , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cefalosporinas/farmacologia , Estudos Transversais , Escherichia coli/genética , Microbiologia de Alimentos , Carne/microbiologia , Salmonella/genética , beta-Lactamases/genética
5.
Foodborne Pathog Dis ; 15(6): 372-376, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29638168

RESUMO

Carbapenemase-producing Enterobacteriaceae (CPE) threaten both agriculture and public health. While carbapenems are restricted in food-producing animals, other ß-lactams, such as ceftiofur, are frequently applied in livestock. While the relationship is not fully elucidated, ceftiofur use may provide selective pressure that promotes carbapenem resistance. Recently reported in U.S. livestock, plasmid-mediated CPE are also present in livestock in Europe and Asia. We previously reported the rare carbapenemase gene, blaIMP-64, in the environment of a large farrow-to-finish swine operation. To better understand CPE in this swine production system, in 2016 we followed a cohort of 350+ pigs over 5 months from late sow gestation to the final finishing phase. We screened both environmental and fecal samples for CPE using our selective enrichment protocol, with resulting phenotypic CPE isolates further characterized. Of 55 environmental and 109 sow fecal samples collected from a farrowing barn on our initial visit, 35 (64%) environmental and 15 (14%) sow fecal samples yielded isolates of multiple Enterobacteriaceae species carrying the metallo-ß-lactamase gene blaIMP-64 on an IncQ plasmid. The frequency of IMP-64-positive environmental (n = 32), sow fecal (n = 30), and piglet fecal swab (n = 120) samples was highest for all groups when the market pig cohort was between 1 and 10 days, with observed prevalence of 97%, 28%, and 18%, respectively. After weaning, blaIMP-64 was detected in a single environmental sample from a nursery pen, with no CPE recovered in the finishing phase. Used in U.S. swine production to treat and control disease, ceftiofur is administered to piglets on this farm at birth, with males receiving a second dose at castration (≈day 7). Once introduced into animal agriculture, the common use of ceftiofur may provide the selection pressure required for CPE dissemination throughout large, intensively managed food animal populations housed in animal-dense environments.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecções por Enterobacteriaceae/veterinária , Enterobacteriaceae/enzimologia , Doenças dos Suínos/microbiologia , beta-Lactamases/genética , Animais , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Fazendas , Fezes/microbiologia , Feminino , Gado , Masculino , Plasmídeos/genética , Gravidez , Suínos
6.
Artigo em Inglês | MEDLINE | ID: mdl-27919894

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) present an urgent threat to public health. While use of carbapenem antimicrobials is restricted for food-producing animals, other ß-lactams, such as ceftiofur, are used in livestock. This use may provide selection pressure favoring the amplification of carbapenem resistance, but this relationship has not been established. Previously unreported among U.S. livestock, plasmid-mediated CRE have been reported from livestock in Europe and Asia. In this study, environmental and fecal samples were collected from a 1,500-sow, U.S. farrow-to-finish operation during 4 visits over a 5-month period in 2015. Samples were screened using selective media for the presence of CRE, and the resulting carbapenemase-producing isolates were further characterized. Of 30 environmental samples collected from a nursery room on our initial visit, 2 (7%) samples yielded 3 isolates, 2 sequence type 218 (ST 218) Escherichia coli and 1 Proteus mirabilis, carrying the metallo-ß-lactamase gene blaIMP-27 on IncQ1 plasmids. We recovered on our third visit 15 IMP-27-bearing isolates of multiple Enterobacteriaceae species from 11 of 24 (46%) environmental samples from 2 farrowing rooms. These isolates each also carried blaIMP-27 on IncQ1 plasmids. No CRE isolates were recovered from fecal swabs or samples in this study. As is common in U.S. swine production, piglets on this farm receive ceftiofur at birth, with males receiving a second dose at castration (≈day 6). This selection pressure may favor the dissemination of blaIMP-27-bearing Enterobacteriaceae in this farrowing barn. The absence of this selection pressure in the nursery and finisher barns likely resulted in the loss of the ecological niche needed for maintenance of this carbapenem resistance gene.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , beta-Lactamases/genética , Animais , Cefalosporinas/farmacologia , Enterobacteriaceae/isolamento & purificação , Fazendas , Fezes/microbiologia , Testes de Sensibilidade Microbiana , New Jersey , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...