Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Adv ; 14(25): 17355-17363, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38813126

RESUMO

With the rapid development of military reconnaissance technology, reconnaissance devices have been equipped with wideband reconnaissance ability, which imposes increased requirements on camouflage. Developing multiband camouflage materials with good compatibility has become increasingly important. Indium tin oxide (ITO), a transparent conductive oxide with good comprehensive photoelectric properties, exhibits different absorption, reflectivity, and transmission characteristics in different bands of electromagnetic waves. Therefore, ITO might be able to solve broadband and multiband camouflage problems effectively. In this paper, ITO is expressed as In32-xSnxO48. The energy band structure, optical properties, and infrared absorption spectra at different doping ratios of Sn (x = 0, 1, 2, 3) were obtained on the basis of first principle theory, and the camouflage mechanism of ITO in different electromagnetic wavebands was explored. Results demonstrated that when x = 3, specifically, when the doping ratio of Sn atoms was 9.375%, ITO had high transmission in the visible light band and infrared band reflectivity and can realize optically compatible infrared camouflage. In accordance with calculation results, ITO nanodispersion liquid (x = 3) was mixed with green camouflage coating added with some additives to prepare green ITO camouflage ink for silkscreen printing. The ink formed a camouflage protective ink coating after it was coated onto the surface of fabric through silkscreen printing. Results showed that the emissivity of the ITO ink coating decreased by more than 0.13 when its solid content reached 20%, and its camouflage performance in the visible light band was barely affected. The results of this research can guide the application of ITO materials in the field of camouflage.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20245316

RESUMO

The current spreading novel coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this study, we screened the gene expression of three SARS-CoV-2 host receptors (ACE2, DC-SIGN and L-SIGN) and DC status in bulk and single cell transcriptomic datasets of upper airway, lung or blood of smokers, non-smokers and COVID-19 patients. We found smoking increased DC-SIGN gene expression and inhibited DC maturation and its ability of T cell stimulation. In COVID-19, DC-SIGN gene expression was interestingly decreased in lung DCs but increased in blood DCs. Strikingly, DCs shifted from cDCs to pDCs in COVID-19, but the shift was trapped in an immature stage (CD22+ or ANXA1+ DC) with MHCII downregulation in severe cases. This observation indicates that DCs in severe cases stimulate innate immune responses but fail to specifically recognize SARS-CoV-2. Our study provides insights into smoking effect on COVID-19 risk and the profound modulation of DC function in severe COVID-19. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=139 SRC="FIGDIR/small/20245316v1_ufig1.gif" ALT="Figure 1"> View larger version (59K): org.highwire.dtl.DTLVardef@11a509borg.highwire.dtl.DTLVardef@a1faeforg.highwire.dtl.DTLVardef@619bb4org.highwire.dtl.DTLVardef@357bf5_HPS_FORMAT_FIGEXP M_FIG C_FIG HighlightsSmoking upregulates the expression of ACE2 and CD209 and inhibits DC maturation in lungs. SARS-CoV-2 modulates the DCs proportion and CD209 expression differently in lung and blood. Severe infection is characterized by DCs less capable of maturation, antigen presentation and MHCII expression. DCs shift from cDCs to pDCs with SARS-CoV-2 infection but are trapped in an immature stage in severe cases.

3.
Journal of Leukemia & Lymphoma ; (12): 148-151,155, 2014.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-601283

RESUMO

Objective To screen siRNAs that can effectively inhibit Apollon gene expression and determine the cellular functions of those siRNAs.Methods A chemical synthesis method was used to synthesize 3 siRNA sequences against different sites of Apollon.They were transfected into the human breast cancer MCF-7 cells by using Lipofectamine 2000.mRNA level of Apollon was determined by reverse transcription-polymerase chain reaction (RT-PCR).Cellular immunity fluorescence quantitative analysis combined with confocal laser technology was used to determine the protein level of Apollon.Methyl thiazolyl tetrazolium bromide (MTT) assay and flow cytometry were used to determine the effects of siRNA targeting Apollon on proliferation and apoptosis of MCF-7 cells,respectively.Results Three pairs of siRNA could significantly inhibit Apollon mRNA expression,at the inhibition rates of (36.201±11.629) %,(67.308±7.686) %and (47.123±12.000) %,respectively (P < 0.05).After tranfection by siRNA2,Apollon protein fluorescence intensity was (14.97±2.08) % compared with control cells.The cell proliferation MCF-7 was inhibited by (73.361±2.118) %and apoptosis was increased by (28.793±0.743) %.Conclusions Screened siRNA2 effectively silences Apollon gene expression,effectively inhibits the proliferation and increases the apoptosis of MCF-7 cells.This provids the foundation for its clinical application in cancer therapy.

4.
China Oncology ; (12): 713-720, 2013.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-440726

RESUMO

Background and purpose:Apollon gene is highly expressed in leukemia and other tumors. The study aimed to discuss whether RNAi technology can reverse multidrug resistance of chronic myeloid leukemia cell line K562 through constructing a eukaryotic vector of short hairpin RNA (shRNA) targeting at Apollon gene. Methods:The eukaryotic vector pGPHI-GFP-Neo-Apollon with shRNA targeting at Apollon gene was constructed and then transfected into K562 cells by LipofectamineTM2000, and G418 pressure selection. Reverse transcription-polymerase chain reaction (RT-PCR) and immunolfuorescence were used to detect the expression of Apollon mRNA and protein after Apollon was transfected stably in K562 cells. The changes of sensitivity of K562 cells to leurocristine (VCR) and etoposide (VP16) after transfection with shRNA-Apollon were detected by MTT method, and the apoptosis rate was detected by flow cytometry. Results: pGPHI-GFP-Neo-Apollon carrier was constructed successfully and expressed stably in K562 cells, and after G418 screening, it silenced Apollon mRNA and protein expression effectively. According to the result of MTT, the sensitivity of K562 cells to VCR and VP16 increased significantly in the group of gene interference, with half of its inhibition concentration (half-inhibitory, IC50) value signiifcantly lower than the control group (P0.05). Conclusion:pGPHI-GFP-Neo-Apollon carrier can enhance the abilities of VCR and VP16 to induce the apoptosis of K562 cells, namely an increase of sensitivity to these chemotherapeutics in K562 cells, it is hinted that RNA interference targeting Apollon gene may reverse the multidrug resistance of leukemia cells in some degree.

5.
International Journal of Pediatrics ; (6): 609-611,614, 2012.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-598170

RESUMO

HOXB gene is a homeobox gene family member and plays an important role in hematopoietic regulation.The abnormal expression is involved in leukemia.High expression of different subtypes influence leukemia progress and phenotype,and are closely related with leukemia treatment and prognosis.The higher the expression level is,the worse prognosis is.Many methods such as transgenic,inhibit of P21,combined with cytokine or MS-5 cell lines( all-trans retinoic acid) at the genetic level can reveal the pathogenesis of leukemi a and provide theoretical basis for treatment and prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...