Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(21): 13768-13780, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38745441

RESUMO

Achieving tunable rupturing of eutectic gallium indium (EGaIn) particles holds great significance in flexible electronic applications, particularly pressure sensors. We tune the mechanosensitivity of EGaIn particles by preparing them in toluene with thiol surfactants and demonstrate an improvement over typical preparations in ethanol. We observe, across multiple length scales, that thiol surfactants and the nonpolar solvent synergistically reduce the applied stress requirements for electromechanical actuation. At the nanoscale, dodecanethiol and propanethiol in toluene suppress gallium oxide growth, as characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. Quantitative AFM imaging produces force-indentation curves and height images, while conductive AFM measures current while probing individual EGaIn particles. As the applied force increases, thiolated particles demonstrate intensified softening, rupturing, and stress-induced electrical activation at forces 40% lower than those for bare particles in ethanol. To confirm that thiolation facilitates rupturing at the macroscale, a laser is used to ablate samples of EGaIn particles. Scanning electron microscopy and resistance measurements across macroscopic samples confirm that thiolated EGaIn particles coalesce to exhibit electrical activation at 0.1 W. Particles prepared in ethanol, however, require 3 times higher laser power to demonstrate a similar behavior. This unique collection of advanced techniques demonstrates that our particle synthesis conditions can facilitate on-demand functionality to benefit electronic applications.

2.
Nat Mater ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413810

RESUMO

Pills are a cornerstone of medicine but can be challenging to swallow. While liquid formulations are easier to ingest, they lack the capacity to localize therapeutics with excipients nor act as controlled release devices. Here we describe drug formulations based on liquid in situ-forming tough (LIFT) hydrogels that bridge the advantages of solid and liquid dosage forms. LIFT hydrogels form directly in the stomach through sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by a drug-containing polymer solution of alginate and four-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels robustly form in the stomachs of live rats and pigs, and are mechanically tough, biocompatible and safely cleared after 24 h. LIFT hydrogels deliver a total drug dose comparable to unencapsulated drug in a controlled manner, and protect encapsulated therapeutic enzymes and bacteria from gastric acid-mediated deactivation. Overall, LIFT hydrogels may expand access to advanced therapeutics for patients with difficulty swallowing.

3.
J Biomed Mater Res A ; 112(6): 931-940, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230545

RESUMO

Tumor hypoxia, resulting from rapid tumor growth and aberrant vascular proliferation, exacerbates tumor aggressiveness and resistance to treatments like radiation and chemotherapy. To increase tumor oxygenation, we developed solid oxygen gas-entrapping materials (O2-GeMs), which were modeled after clinical brachytherapy implants, for direct tumor implantation. The objective of this study was to investigate the impact different formulations of solid O2-GeMs have on the entrapment and delivery of oxygen. Using a Parr reactor, we fabricated solid O2-GeMs using carbohydrate-based formulations used in the confectionary industry. In evaluating solid O2-GeMs manufactured from different sugars, the sucrose-containing formulation exhibited the highest oxygen concentration at 1 mg/g, as well as the fastest dissolution rate. The addition of a surface coating to the solid O2-GeMs, especially polycaprolactone, effectively prolonged the dissolution of the solid O2-GeMs. In vivo evaluation confirmed robust insertion and positioning of O2-GeMs in a malignant peripheral nerve sheath tumor, highlighting potential clinical applications.


Assuntos
Neoplasias , Oxigênio , Humanos , Hipóxia Tumoral/fisiologia , Neoplasias/tratamento farmacológico
4.
Adv Sci (Weinh) ; 10(10): e2205995, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36727291

RESUMO

Tumor hypoxia drives resistance to many cancer therapies, including radiotherapy and chemotherapy. Methods that increase tumor oxygen pressures, such as hyperbaric oxygen therapy and microbubble infusion, are utilized to improve the responses to current standard-of-care therapies. However, key obstacles remain, in particular delivery of oxygen at the appropriate dose and with optimal pharmacokinetics. Toward overcoming these hurdles, gas-entrapping materials (GeMs) that are capable of tunable oxygen release are formulated. It is shown that injection or implantation of these materials into tumors can mitigate tumor hypoxia by delivering oxygen locally and that these GeMs enhance responsiveness to radiation and chemotherapy in multiple tumor types. This paper also demonstrates, by comparing an oxygen (O2 )-GeM to a sham GeM, that the former generates an antitumorigenic and immunogenic tumor microenvironment in malignant peripheral nerve sheath tumors. Collectively the results indicate that the use of O2 -GeMs is promising as an adjunctive strategy for the treatment of solid tumors.


Assuntos
Oxigenoterapia Hiperbárica , Neoplasias , Humanos , Oxigênio , Neoplasias/tratamento farmacológico , Hipóxia Tumoral , Microambiente Tumoral
5.
Adv Mater ; 35(11): e2208227, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36321332

RESUMO

Actively triggerable materials, which break down upon introduction of an exogenous stimulus, enable precise control over the lifetime of biomedical technologies, as well as adaptation to unforeseen circumstances, such as changes to an established treatment plan. Yet, most actively triggerable materials are low-strength polymers and hydrogels with limited long-term durability. By contrast, metals possess advantageous functional properties, including high mechanical strength and conductivity, that are desirable across several applications within biomedicine. To realize actively triggerable metals, a mechanism called liquid metal embrittlement is leveraged, in which certain liquid metals penetrate the grain boundaries of certain solid metals and cause them to dramatically weaken or disintegrate. In this work, it is demonstrated that eutectic gallium indium (EGaIn), a biocompatible alloy of gallium, can be formulated to reproducibly trigger the breakdown of aluminum within different physiologically relevant environments. The breakdown behavior of aluminum after triggering can further be readily controlled by manipulating its grain structure. Finally, three possible use cases of biomedical devices constructed from actively triggerable metals are demonstrated.


Assuntos
Alumínio , Gálio , Ligas , Gálio/química , Índio/química , Condutividade Elétrica
6.
Nat Rev Mater ; 7(11): 908-925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124042

RESUMO

The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.

7.
Sci Transl Med ; 14(651): eabl4135, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767653

RESUMO

Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Monóxido de Carbono/uso terapêutico , Colite/tratamento farmacológico , Gases , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Suínos
8.
Nat Biomed Eng ; 6(10): 1092-1104, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35314802

RESUMO

The evaluation of the tone and contractile patterns of the gastrointestinal (GI) tract via manometry is essential for the diagnosis of GI motility disorders. However, manometry is expensive and relies on complex and bulky instrumentation. Here we report the development and performance of an inexpensive and easy-to-manufacture catheter-like device for capturing manometric data across the dynamic range observed in the human GI tract. The device, which we designed to resemble the quipu-knotted strings used by Andean civilizations for the capture and transmission of information-consists of knotted piezoresistive pressure sensors made by infusing a liquid metal (eutectic gallium-indium) through thin silicone tubing. By exploring a range of knotting configurations, we identified optimal design schemes that led to sensing performances comparable to those of commercial devices for GI manometry, as we show for the sensing of GI motility in multiple anatomic sites of the GI tract of anaesthetized pigs. Disposable and customizable piezoresistive catheters may broaden the use of GI manometry in low-resource settings.


Assuntos
Gálio , Silicones , Humanos , Suínos , Animais , Transdutores de Pressão , Índio , Manometria
9.
Nat Rev Neurosci ; 22(10): 593-615, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376834

RESUMO

Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Materiais Biocompatíveis/metabolismo , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
10.
Nat Commun ; 9(1): 5030, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470738

RESUMO

The original version of this Article contained an error in the second sentence of the 'Materials' section of the Methods, which incorrectly read 'PEDOT:PSS synthesized by Orgacon (739324 Aldrich, MDL MFCD07371079) was purchased as a surfactant-free aqueous dispersion with 1.1 wt% solid content.' The correct version replaces this sentence with 'PEDOT:PSS Orgacon ICP 1050 was provided by Agfa as a surfactant-free aqueous dispersion with 1.1 wt% solid content.' This has been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 9(1): 2740, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013027

RESUMO

Conductive and stretchable materials that match the elastic moduli of biological tissue (0.5-500 kPa) are desired for enhanced interfacial and mechanical stability. Compared with inorganic and dry polymeric conductors, hydrogels made with conducting polymers are promising soft electrode materials due to their high water content. Nevertheless, most conducting polymer-based hydrogels sacrifice electronic performance to obtain useful mechanical properties. Here we report a method that overcomes this limitation using two interpenetrating hydrogel networks, one of which is formed by the gelation of the conducting polymer PEDOT:PSS. Due to the connectivity of the PEDOT:PSS network, conductivities up to 23 S m-1 are achieved, a record for stretchable PEDOT:PSS-based hydrogels. Meanwhile, the low concentration of PEDOT:PSS enables orthogonal control over the composite mechanical properties using a secondary polymer network. We demonstrate tunability of the elastic modulus over three biologically relevant orders of magnitude without compromising stretchability ( > 100%) or conductivity ( > 10 S m-1).


Assuntos
Materiais Biomiméticos/química , Elétrons , Hidrogéis/química , Poliestirenos/química , Tiofenos/química , Materiais Biomiméticos/síntese química , Módulo de Elasticidade , Condutividade Elétrica , Eletrodos , Humanos , Hidrogéis/síntese química , Teste de Materiais
12.
ACS Cent Sci ; 4(3): 337-348, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29632879

RESUMO

Biodegradable electronics have great potential to reduce the environmental footprint of devices and enable advanced health monitoring and therapeutic technologies. Complex biodegradable electronics require biodegradable substrates, insulators, conductors, and semiconductors, all of which comprise the fundamental building blocks of devices. This review will survey recent trends in the strategies used to fabricate biodegradable forms of each of these components. Polymers that can disintegrate without full chemical breakdown (type I), as well as those that can be recycled into monomeric and oligomeric building blocks (type II), will be discussed. Type I degradation is typically achieved with engineering and material science based strategies, whereas type II degradation often requires deliberate synthetic approaches. Notably, unconventional degradable linkages capable of maintaining long-range conjugation have been relatively unexplored, yet may enable fully biodegradable conductors and semiconductors with uncompromised electrical properties. While substantial progress has been made in developing degradable device components, the electrical and mechanical properties of these materials must be improved before fully degradable complex electronics can be realized.

13.
Nature ; 555(7694): 83-88, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466334

RESUMO

Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.


Assuntos
Eletrônica/instrumentação , Maleabilidade , Pele , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Humanos , Polímeros/química , Silício/química
14.
Science ; 355(6320): 59-64, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059762

RESUMO

Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...