Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 590(7847): 576-579, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627811

RESUMO

The use of particle accelerators as photon sources has enabled advances in science and technology1. Currently the workhorses of such sources are storage-ring-based synchrotron radiation facilities2-4 and linear-accelerator-based free-electron lasers5-14. Synchrotron radiation facilities deliver photons with high repetition rates but relatively low power, owing to their temporally incoherent nature. Free-electron lasers produce radiation with high peak brightness, but their repetition rate is limited by the driving sources. The steady-state microbunching15-22 (SSMB) mechanism has been proposed to generate high-repetition, high-power radiation at wavelengths ranging from the terahertz scale to the extreme ultraviolet. This is accomplished by using microbunching-enabled multiparticle coherent enhancement of the radiation in an electron storage ring on a steady-state turn-by-turn basis. A crucial step in unveiling the potential of SSMB as a future photon source is the demonstration of its mechanism in a real machine. Here we report an experimental demonstration of the SSMB mechanism. We show that electron bunches stored in a quasi-isochronous ring can yield sub-micrometre microbunching and coherent radiation, one complete revolution after energy modulation induced by a 1,064-nanometre-wavelength laser. Our results verify that the optical phases of electrons can be correlated turn by turn at a precision of sub-laser wavelengths. On the basis of this phase correlation, we expect that SSMB will be realized by applying a phase-locked laser that interacts with the electrons turn by turn. This demonstration represents a milestone towards the implementation of an SSMB-based high-repetition, high-power photon source.

2.
Opt Express ; 25(14): 16574-16588, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789160

RESUMO

Synchrotron radiation-based nano-FTIR spectroscopy utilizes the highly brilliant and ultra-broadband infrared (IR) radiation provided by electron storage rings for the infrared spectroscopic characterization of samples at the nanoscale. In order to exploit the full potential of this approach we investigated the influence of the properties of the radiation source, such as the electron bunch shape and spectral bandwidth of the emitted radiation, on near-field infrared spectra of silicon-carbide (SiC). The adapted configuration of the storage ring optics enables a modification of the transverse electron bunch profile allowing an increase of the measured near-field signal amplitude. Additionally, the decay of the signal amplitude due to the decreasing storage ring current is also eliminated. Further options for improving the sensitivity of nano-FTIR spectroscopy, which can also be applied to other broadband radiation sources, are the adaption of the spectral bandwidth to the wavelength range of interest or the use of polarization optics. The sensitivity enhancement emerging from these options is verified by comparing near-field spectra collected from crystalline SiC samples. The improvement in sensitivity by combining these approaches is demonstrated by acquiring nano-FTIR spectra from thin organic films, which show weak resonances in the IR-regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...