Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Diagn ; 22(7): 885-900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32407802

RESUMO

The analysis of CpG methylation in circulating tumor DNA fragments has emerged as a promising approach for the noninvasive early detection of solid tumors, including colorectal cancer (CRC). The most commonly employed assay involves bisulfite conversion of circulating tumor DNA, followed by targeted PCR, then real-time quantitative PCR (alias methylation-specific PCR). This report demonstrates the ability of a multiplex bisulfite PCR-ligase detection reaction-real-time quantitative PCR assay to detect seven methylated CpG markers (CRC or colon specific), in both simulated (approximately 30 copies of fragmented CRC cell line DNA mixed with approximately 3000 copies of fragmented peripheral blood DNA) and CRC patient-derived cell-free DNAs. This scalable assay is designed for multiplexing and incorporates steps for improved sensitivity and specificity, including the enrichment of methylated CpG fragments, ligase detection reaction, the incorporation of ribose bases in primers, and use of uracil DNA glycosylase. Six of the seven CpG markers (located in promoter regions of PPP1R16B, KCNA3, CLIP4, GDF6, SEPT9, and GSG1L) were identified through integrated analyses of genome-wide methylation data sets for 31 different types of cancer. These markers were mapped to CpG sites at the promoter region of VIM; VIM and SEPT9 are established epigenetic markers of CRC. Additional bioinformatics analyses show that the methylation at these CpG sites negatively correlates with the transcription of their corresponding genes.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Metilação de DNA/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequência de Bases/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos de Coortes , Neoplasias Colorretais/diagnóstico , Biologia Computacional/métodos , Ilhas de CpG/genética , Células HT29 , Humanos , Ligases/genética , Regiões Promotoras Genéticas/genética , Septinas/sangue , Septinas/genética , Vimentina/sangue , Vimentina/genética
2.
J Med Chem ; 63(6): 3004-3027, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32057241

RESUMO

ß-Tryptase, a homotetrameric serine protease, has four identical active sites facing a central pore, presenting an optimized setting for the rational design of bivalent inhibitors that bridge two adjacent sites. Using diol, hydroxymethyl phenols or benzoyl methyl hydroxamates, and boronic acid chemistries to reversibly join two [3-(1-acylpiperidin-4-yl)phenyl]methanamine core ligands, we have successfully produced a series of self-assembling heterodimeric inhibitors. These heterodimeric tryptase inhibitors demonstrate superior activity compared to monomeric modes of inhibition. X-ray crystallography validated the dimeric mechanism of inhibition, and compounds demonstrated high selectivity against related proteases, good target engagement, and tryptase inhibition in HMC1 xenograft models. Screening 3872 possible combinations from 44 boronic acid and 88 diol derivatives revealed several combinations that produced nanomolar inhibition, and seven unique pairs produced greater than 100-fold improvement in potency over monomeric inhibition. These heterodimeric tryptase inhibitors demonstrate the power of target-driven combinatorial chemistry to deliver bivalent drugs in a small molecule form.


Assuntos
Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Triptases/antagonistas & inibidores , Animais , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Cristalografia por Raios X , Feminino , Humanos , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triptases/química , Triptases/metabolismo
3.
BMC Cancer ; 20(1): 85, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005108

RESUMO

BACKGROUND: Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR. METHODS: In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31 types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood. RESULTS: Our results indicate that the PCR-LDR-qPCR assay is capable of detecting ~ 30 methylated copies of each of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each), which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA) when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of EFNA3). Additional bioinformatic analyses would reveal that these methylation markers are independent of patient race and age, and positively associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear receptor, PTEN, p53, pRB, and p27). CONCLUSION: This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with bioinformatically-driven biomarker discovery, in blood-based BrCa detection.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/diagnóstico , Ácidos Nucleicos Livres/sangue , Metilação de DNA , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Ilhas de CpG , Feminino , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase Multiplex , Proteína Quinase C beta/genética , Receptores Citoplasmáticos e Nucleares/genética
4.
Hum Mutat ; 41(5): 1051-1068, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31950578

RESUMO

Detection of low-abundance mutations in cell-free DNA is being used to identify early cancer and early cancer recurrence. Here, we report a new PCR-LDR-qPCR assay capable of detecting point mutations at a single-molecule resolution in the presence of an excess of wild-type DNA. Major features of the assay include selective amplification and detection of mutant DNA employing multiple nested primer-binding regions as well as wild-type sequence blocking oligonucleotides, prevention of carryover contamination, spatial sample dilution, and detection of multiple mutations in the same position. Our method was tested to interrogate the following common cancer somatic mutations: BRAF:c.1799T>A (p.Val600Glu), TP53:c.743G>A (p.Arg248Gln), KRAS:c.35G>C (p.Gly12Ala), KRAS:c.35G>T (p.Gly12Val), KRAS:c.35G>A (p.Gly12Asp), KRAS:c.34G>T (p.Gly12Cys), and KRAS:c.34G>A (p.Gly12Ser). The single-well version of the assay detected 2-5 copies of these mutations, when diluted with 10,000 genome equivalents (GE) of wild-type human genomic DNA (hgDNA) from buffy coat. A 12-well (pixel) version of the assay was capable of single-molecule detection of the aforementioned mutations at TP53, BRAF, and KRAS (specifically p.Gly12Val and p.Gly12Cys), mixed with 1,000-2,250 GE of wild-type hgDNA from plasma or buffy coat. The assay described herein is highly sensitive, specific, and robust, and potentially useful in liquid biopsies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Mutação Puntual , Reação em Cadeia da Polimerase em Tempo Real , Imagem Individual de Molécula/métodos , Alelos , Substituição de Aminoácidos , Linhagem Celular Tumoral , DNA Tumoral Circulante , Análise Mutacional de DNA/métodos , Genótipo , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...