Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 612(7940): 555-563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450983

RESUMO

Squamous cell carcinomas are triggered by marked elevation of RAS-MAPK signalling and progression from benign papilloma to invasive malignancy1-4. At tumour-stromal interfaces, a subset of tumour-initiating progenitors, the cancer stem cells, obtain increased resistance to chemotherapy and immunotherapy along this pathway5,6. The distribution and changes in cancer stem cells during progression from a benign state to invasive squamous cell carcinoma remain unclear. Here we show in mice that, after oncogenic RAS activation, cancer stem cells rewire their gene expression program and trigger self-propelling, aberrant signalling crosstalk with their tissue microenvironment that drives their malignant progression. The non-genetic, dynamic cascade of intercellular exchanges involves downstream pathways that are often mutated in advanced metastatic squamous cell carcinomas with high mutational burden7. Coupling our clonal skin HRASG12V mouse model with single-cell transcriptomics, chromatin landscaping, lentiviral reporters and lineage tracing, we show that aberrant crosstalk between cancer stem cells and their microenvironment triggers angiogenesis and TGFß signalling, creating conditions that are conducive for hijacking leptin and leptin receptor signalling, which in turn launches downstream phosphoinositide 3-kinase (PI3K)-AKT-mTOR signalling during the benign-to-malignant transition. By functionally examining each step in this pathway, we reveal how dynamic temporal crosstalk with the microenvironment orchestrated by the stem cells profoundly fuels this path to malignancy. These insights suggest broad implications for cancer therapeutics.


Assuntos
Carcinoma de Células Escamosas , Genes ras , Células-Tronco Neoplásicas , Transdução de Sinais , Microambiente Tumoral , Proteínas ras , Animais , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Leptina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Nat Commun ; 13(1): 6409, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302921

RESUMO

Macrophages and cancer cells populations are posited to navigate basement membrane barriers by either mobilizing proteolytic enzymes or deploying mechanical forces. Nevertheless, the relative roles, or identity, of the proteinase -dependent or -independent mechanisms used by macrophages versus cancer cells to transmigrate basement membrane barriers harboring physiologically-relevant covalent crosslinks remains ill-defined. Herein, both macrophages and cancer cells are shown to mobilize membrane-anchored matrix metalloproteinases to proteolytically remodel native basement membranes isolated from murine tissues while infiltrating the underlying interstitial matrix ex vivo. In the absence of proteolytic activity, however, only macrophages deploy actomyosin-generated forces to transmigrate basement membrane pores, thereby providing the cells with proteinase-independent access to the interstitial matrix while simultaneously exerting global effects on the macrophage transcriptome. By contrast, cancer cell invasive activity is reliant on metalloproteinase activity and neither mechanical force nor changes in nuclear rigidity rescue basement membrane transmigration. These studies identify membrane-anchored matrix metalloproteinases as key proteolytic effectors of basement membrane remodeling by macrophages and cancer cells while also defining the divergent invasive strategies used by normal and neoplastic cells to traverse native tissue barriers.


Assuntos
Matriz Extracelular , Neoplasias , Humanos , Camundongos , Animais , Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Macrófagos , Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo
3.
Sci Transl Med ; 12(529)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024800

RESUMO

Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K-null mice, as well as cathepsin K-mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K-independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone- or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Osso e Ossos , Catepsinas , Feminino , Humanos , Camundongos , Osteoclastos , Ovariectomia
4.
Dev Cell ; 47(2): 145-160.e6, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30269950

RESUMO

Metastasizing breast carcinoma cells have been hypothesized to mobilize tissue-invasive activity by co-opting the proteolytic systems employed by normal mammary epithelial cells undergoing branching morphogenesis. However, the critical effectors underlying morphogenesis remain unidentified, and their relationship to breast cancer invasion programs is yet to be established. Here, we identify the membrane-anchored matrix metalloproteinase, Mmp14/MT1-MMP, but not the closely related proteinase Mmp15/MT2-MMP, as the dominant proteolytic effector of both branching morphogenesis and carcinoma cell invasion in vivo. Unexpectedly, however, epithelial cell-specific targeting of Mmp14/MT1-MMP in the normal mammary gland fails to impair branching, whereas deleting the proteinase in carcinoma cells abrogates invasion, preserves matrix architecture, and completely blocks metastasis. By contrast, in the normal mammary gland, extracellular matrix remodeling and morphogenesis are ablated only when Mmp14/MT1-MMP expression is specifically deleted from the periductal stroma. Together, these findings uncover the overlapping but divergent strategies that underlie developmental versus neoplastic matrix remodeling programs.


Assuntos
Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/fisiologia , Invasividade Neoplásica/patologia , Animais , Neoplasias da Mama/patologia , Movimento Celular , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Feminino , Humanos , Glândulas Mamárias Animais/patologia , Metaloproteinase 15 da Matriz/metabolismo , Camundongos , Morfogênese , Metástase Neoplásica/fisiopatologia , Transplante Heterólogo
5.
J Biol Chem ; 293(21): 8113-8127, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29643184

RESUMO

Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.


Assuntos
Membrana Celular/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Hemopexina/metabolismo , Metaloproteinase 14 da Matriz/fisiologia , Animais , Cristalografia por Raios X , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Ligação Proteica , Transporte Proteico
6.
Development ; 143(21): 3956-3968, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633994

RESUMO

During late embryogenesis, mammary epithelial cells initiate migration programs that drive ductal invasion into the surrounding adipose-rich mesenchyme. Currently, branching morphogenesis is thought to depend on the mobilization of the membrane-anchored matrix metalloproteinases MMP14 (MT1-MMP) and MMP15 (MT2-MMP), which drive epithelial cell invasion by remodeling the extracellular matrix and triggering associated signaling cascades. However, the roles that these proteinases play during mammary gland development in vivo remain undefined. Here, we characterize the impact of global Mmp14 and Mmp15 targeting on early postnatal mammary gland development in mice. Unexpectedly, both Mmp14-/- and Mmp15-/- mammary glands retain the ability to generate intact ductal networks. Although neither proteinase is required for branching morphogenesis, transcriptome profiling reveals a key role for MMP14 and MMP15 in regulating mammary gland adipocyte differentiation. Whereas MMP14 promotes the generation of white fat depots crucial for energy storage, MMP15 differentially controls the formation of thermogenic brown fat. Taken together, these data not only indicate that current paradigms relevant to proteinase-dependent morphogenesis need be revisited, but also identify new roles for the enzymes in regulating adipocyte fate determination in the developing mammary gland.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Metaloproteinase 14 da Matriz/fisiologia , Metaloproteinase 15 da Matriz/fisiologia , Morfogênese/genética , Adipócitos/fisiologia , Adipogenia/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Metabolismo Energético/genética , Feminino , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...