Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc (Graph Interface) ; 2021: 156-165, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35185271

RESUMO

We present PaperPal, a wearable smartphone assistant which blind people can use to fill out paper forms independently. Unique features of PaperPal include: a novel 3D-printed attachment that transforms a conventional smartphone into a wearable device with adjustable camera angle; capability to work on both flat stationary tables and portable clipboards; real-time video tracking of pen and paper which is coupled to an interface that generates real-time audio read outs of the form's text content and instructions to guide the user to the form fields; and support for filling out these fields without signature guides. The paper primarily focuses on an essential aspect of PaperPal, namely an accessible design of the wearable elements of PaperPal and the design, implementation and evaluation of a novel user interface for the filling of paper forms by blind people. PaperPal distinguishes itself from a recent work on smartphone-based assistant for blind people for filling paper forms that requires the smartphone and the paper to be placed on a stationary desk, needs the signature guide for form filling, and has no audio read outs of the form's text content. PaperPal, whose design was informed by a separate wizard-of-oz study with blind participants, was evaluated with 8 blind users. Results indicate that they can fill out form fields at the correct locations with an accuracy reaching 96.7%.

2.
MobileHCI ; 20212021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37547542

RESUMO

Gliding a finger on touchscreen to reach a target, that is, touch exploration, is a common selection method of blind screen-reader users. This paper investigates their gliding behavior and presents a model for their motor performance. We discovered that the gliding trajectories of blind people are a mixture of two strategies: 1) ballistic movements with iterative corrections relying on non-visual feedback, and 2) multiple sub-movements separated by stops, and concatenated until the target is reached. Based on this finding, we propose the mixture pointing model, a model that relates movement time to distance and width of the target. The model outperforms extant models, improving R2 from 0.65 for Fitts' law to 0.76, and is superior in cross-validation and information criteria. The model advances understanding of gliding-based target selection and serves as a tool for designing interface layouts for screen-reader based touch exploration.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34337615

RESUMO

Consuming video content poses significant challenges for many screen magnifier users, which is the "go to" assistive technology for people with low vision. While screen magnifier software could be used to achieve a zoom factor that would make the content of the video visible to low-vision users, it is oftentimes a major challenge for these users to navigate through videos. Towards making videos more accessible for low-vision users, we have developed the SViM video magnifier system [6]. Specifically, SViM consists of three different magnifier interfaces with easy-to-use means of interactions. All three interfaces are driven by visual saliency as a guided signal, which provides a quantification of interestingness at the pixel-level. Saliency information, which is provided as a heatmap is then processed to obtain distinct regions of interest. These regions of interests are tracked over time and displayed using an easy-to-use interface. We present a description of our overall design and interfaces.

4.
IUI ; 2020: 10-21, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33569551

RESUMO

People with low vision who use screen magnifiers to interact with computing devices find it very challenging to interact with dynamically changing digital content such as videos, since they do not have the luxury of time to manually move, i.e., pan the magnifier lens to different regions of interest (ROIs) or zoom into these ROIs before the content changes across frames. In this paper, we present SViM, a first of its kind screen-magnifier interface for such users that leverages advances in computer vision, particularly video saliency models, to identify salient ROIs in videos. SViM's interface allows users to zoom in/out of any point of interest, switch between ROIs via mouse clicks and provides assistive panning with the added flexibility that lets the user explore other regions of the video besides the ROIs identified by SViM. Subjective and objective evaluation of a user study with 13 low vision screen magnifier users revealed that overall the participants had a better user experience with SViM over extant screen magnifiers, indicative of the former's promise and potential for making videos accessible to low vision screen magnifier users.

5.
IUI ; 2020: 111-115, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33585839

RESUMO

Navigating webpages with screen readers is a challenge even with recent improvements in screen reader technologies and the increased adoption of web standards for accessibility, namely ARIA. ARIA landmarks, an important aspect of ARIA, lets screen reader users access different sections of the webpage quickly, by enabling them to skip over blocks of irrelevant or redundant content. However, these landmarks are sporadically and inconsistently used by web developers, and in many cases, even absent in numerous web pages. Therefore, we propose SaIL, a scalable approach that automatically detects the important sections of a web page, and then injects ARIA landmarks into the corresponding HTML markup to facilitate quick access to these sections. The central concept underlying SaIL is visual saliency, which is determined using a state-of-the-art deep learning model that was trained on gaze-tracking data collected from sighted users in the context of web browsing. We present the findings of a pilot study that demonstrated the potential of SaIL in reducing both the time and effort spent in navigating webpages with screen readers.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34335796

RESUMO

The emergence of wearable devices such as smartwatches is spurring new user interface designs and interaction modalities for these devices. One such new input modality for interacting with smartwatches is wrist gestures. Smartwatches are beginning to support a set of wrist gestures using which users can do a range of one-handed interactions with these devices. Wrist gestures are particularly appealing for people with vision impairments (PVIs) as touch-based interaction with smartwatch screens is quite challenging for them. However, the question of how accessible are wrist gestures for PVIs to interact with wearable devices, remains unexplored. To this end, we conducted a user study to explore this question. The study reveals the accessibility barriers of the current generation of wrist gestures and sheds insight on how to make them accessible for PVIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...