Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050313

RESUMO

Cellulose nanocrystals (CNCs) were extracted from bleached cotton by sulfuric acid hydrolysis. Thin films were prepared from the aqueous suspension of CNCs by casting and evaporation with 15% glycerol as a plasticizer. Our research aimed to create stable films resistant to water. The structure and the interactions of the films were modified by short (10 min) heating at different temperatures (100, 140, and 160 °C) and by adding different amounts of citric acid (0, 10, 20, and 30%). Various analytical methods were used to determine the structure, surface properties, and mechanical properties. The interaction of composite films with water and water vapor was also investigated. Heat treatment did not significantly affect the film properties. Citric acid, without heat treatment, acted as a plasticizer. It promoted the disintegration of films in water, increased water vapor sorption, and reduced tensile strength, resulting in flexible and easy-to-handle films. The combination of heat treatment and citric acid resulted in stable liquid-water-resistant films with excellent mechanical properties. A minimum heating temperature of 120 °C and a citric acid concentration of 20% were required to obtain a stable CNC film structure resistant to liquid water.

2.
Materials (Basel) ; 15(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36363218

RESUMO

In this research, different clays such as laponite and montmorillonite (NaMMT) are used as fillers in the preparation of thermoplastic starch/clay nanocomposites. Thin films are produced by casting and evaporation in a wide composition range, using glycerol as the plasticizer at two different concentrations. The surface energy of clay fillers is measured by inverse gas chromatography (IGC); X-ray diffraction (XRD) and light transmission measurements (UV-VIS) are carried out to characterize the structure of nanocomposites; and mechanical properties and water vapor permeability are also studied. While all the starch/montmorillonite nanocomposites possess intercalated structures, significant exfoliation can be noted in the starch/laponite nanocomposites, mainly at low clay contents. Due to the larger surface energy of montmorillonite, stronger polymer/clay interactions and better mechanical properties can be assumed in starch/NaMMT composites. The smaller surface energy of laponite, however, can facilitate the delamination of laponite layers. Thus, the specific surface area of laponite can be further increased by exfoliation. Based on the results, the better exfoliation and the much larger specific surface area of laponite lead to higher reinforcement in starch/laponite nanocomposites.

3.
Polymers (Basel) ; 13(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577999

RESUMO

This paper presents a comprehensive study about the application of a lignocellulosic agricultural waste, sunflower husk in different polymer composites. Two types of milled sunflower husk with different geometrical factors were incorporated into polypropylene, low-density and high-density polyethylene, polystyrene (PS), glycol-modified polyethylene terephthalate (PETG) and polylactic acid (PLA). The filler content of the composites varied between 0 and 60 vol%. The components were homogenized in an internal mixer and plates were compression molded for testing. The Lewis-Nielsen model was fitted to the moduli of each composite series, and it was found that the physical contact of the filler particles is a limiting factor of composite modulus. Interfacial interactions were estimated from two independent approaches. Firstly, the extent of reinforcement was determined from the composition dependence of tensile strength. Secondly, the reversible work of adhesion was calculated from the surface energies of the components. As only weak van der Waals interactions develop in the interphase of polyolefins and sunflower husk particles, adhesion is weak in their composites resulting in poor reinforcement. Interfacial adhesion enhanced by specific interactions in the interphase, such as π electron interactions for PS, hydrogen bonds for PLA, and both for PETG based composites.

4.
Polymers (Basel) ; 13(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34578087

RESUMO

Composite films were fabricated by using cellulose nanocrystals (CNCs) as reinforcement up to 50 wt% in thermoplastic starch (TPS). Structure and interactions were modified by using different types (glycerol and sorbitol) and different amounts (30 and 40%) of plasticizers. The structure of the composites was characterized by visible spectroscopy, Haze index measurements, and scanning electron microscopy. Tensile properties were determined by tensile testing, and the effect of CNC content on vapor permeability was investigated. Although all composite films are transparent and can hardly be distinguished by human eyes, the addition of CNCs somewhat decreases the transmittance of the films. This can be related to the increased light scattering of the films, which is caused by the aggregation of nanocrystals, leading to the formation of micron-sized particles. Nevertheless, strength is enhanced by CNCs, mostly in the composite series prepared with 30% sorbitol. Additionally, the relatively high water vapor permeability of TPS is considerably decreased by the incorporation of at least 20 wt% CNCs. Reinforcement is determined mostly by the competitive interactions among starch, nanocellulose, and plasticizer molecules. The aging of the films is caused by the additional water uptake from the atmosphere and the retrogradation of starch.

5.
Ultrason Sonochem ; 78: 105711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34403893

RESUMO

The contribution of ultrasound-aided particle size reduction to the efficiency of the subsequent enzymatic hydrolysis and the accompanying morphological changes of bleached cotton and linen powders were investigated. The aqueous suspensions of cellulosic powders were pretreated either with an ultrasonic bath (US-B) or with a horn-type reactor (US-H). Results revealed that the impact of US-H was more pronounced than that of the US-B. Clearly, the linen particles were more sensitive to ultrasonication than cotton. The US-H modified the particle size distribution differently for the cotton and linen powders and reduced the mean size of particles from 49 to 40 µm and from 123 to 63 µm, respectively. A significant increase in the water retention and water sorption capacity was also measured. The smaller particles with increased accessibility were preferably digested in the enzyme treatment, resulting in a considerably higher concentration of reducing sugars and an enrichment of the residual particles with a larger average size (cotton: 47 µm; linen: 66 µm).


Assuntos
Celulose/química , Celulase , Hidrólise , Tamanho da Partícula , Pós , Água
6.
Int J Biol Macromol ; 136: 1026-1033, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220497

RESUMO

To develop functional and sustainable packaging materials from starch and to enhance their properties, agar was added to thermoplastic corn starch (TPS) in a wide concentration range and the products were prepared either by casting or melt blending with a high glycerol content. The role of agar in the mechanical and barrier performance of films, as well as the compatibility of TPS and agar was systematically evaluated. In addition, the retrogradiation of starch in various blends after long storage periods was widely characterized. Results proved that the addition of agar to TPS resulted in films with promising barrier and tensile properties. Stiffness and strength increased considerably by increasing agar content, while deformability of blends was better than those of pure TPS. Agar incorporation decreased water permeability and solubility and improved light transmittance. Retrogradation of the dry blends was significantly smaller than that of pure TPS owing to the strong starch/agar interaction.


Assuntos
Ágar/química , Plásticos/síntese química , Amido/química , Temperatura , Solubilidade , Vapor , Resistência à Tração
7.
Carbohydr Polym ; 113: 569-76, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256520

RESUMO

TPS/Na-montmorillonite nanocomposite films were prepared by solution and melt blending. Clay content changed between 0 and 25 wt% based on the amount of dry starch. Structure, tensile properties, and water content of wet conditioned films were determined as a function of clay content. Intercalated structure and VH-type crystallinity of starch were found for all the nanocomposites independently of clay and plasticizer content or preparation method, but at larger than 10 wt% clay content nanocomposites prepared by melt intercalation contained aggregated particles as well. In spite of the incomplete exfoliation clay reinforces TPS considerably. Preparation method has a strong influence on mechanical properties of wet conditioned films. Mechanical properties of the conditioned samples prepared by solution homogenization are much better than those of nanocomposites prepared by melt blending. Water, which was either adsorbed or bonded in the composites in conditioning or solution mixing process, respectively, has different effect on mechanical properties.

8.
Carbohydr Polym ; 102: 821-9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24507352

RESUMO

Thermoplastic starch (TPS)/wood composites were prepared from starch plasticized with 36 wt% glycerol. The components were homogenized by dry-blending, extruded and injection molded to tensile bars. Tensile properties, structure, deformation, water adsorption and shrinkage were determined as a function of wood content, which changed between 0 and 40 vol% in 7 steps. The modification of TPS with wood particles improves several properties considerably. Stiffness and strength increases, and the effect is stronger for fibers with larger aspect ratio. Wood fibers reinforce TPS considerably due to poor matrix properties and strong interfacial interactions, the latter resulting in the decreased mobility of starch molecules and in the fracture of large wood particles during deformation. Strong interfacial adhesion leads to smaller water absorption than predicted from additivity, but water uptake remains relatively large even in the presence of wood particles. The shrinkage of injection molded TPS parts is very large, around 10%, and dimensional changes occur on a very long timescale of several hundred hours. Shrinkage decreases to a low level already at 15-20 vol% wood content rendering the composites good dimensional stability.

9.
Langmuir ; 27(13): 8444-50, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21657257

RESUMO

Cotton and linen fibers were ground in a ball-mill, and the effect of grinding on the microstructure and surface properties of the fibers was determined by combining a couple of simple tests with powerful techniques of surface and structure analysis. Results clearly proved that the effect of grinding on cotton fiber was much less severe than on linen. For both fibers, the degree of polymerization reduced (by 14.5% and 30.5% for cotton and linen, respectively) with a simultaneous increase in copper number. The increased water sorption capacity of the ground substrates was in good agreement with the X-ray results, which proved a less perfect crystalline structure in the ground samples. Data from XPS and SEM-EDS methods revealed that the concentration of oxygen atoms (bonded especially in acetal and/or carbonyl groups) on the ground surfaces increased significantly, resulting in an increase in oxygen/carbon atomic ratio (XPS data: from 0.11 to 0.14 and from 0.16 to 0.29 for cotton and linen, respectively). Although grinding created new surfaces rich in O atoms, the probable higher energy of the surface could not be measured by IGC, most likely due to the limited adsorption of the n-alkane probes on the less perfect crystalline surfaces.


Assuntos
Roupas de Cama, Mesa e Banho , Celulose/química , Fibra de Algodão , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
Langmuir ; 22(18): 7848-54, 2006 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16922573

RESUMO

A sodium montmorillonite and six organophilic montmorillonites coated with different surfactants were characterized in various ways in the study. Particle and surface characteristics were determined by nitrogen adsorption and inverse gas chromatography, respectively. The gallery structure of organophilic montmorillonite, the orientation of surfactants in the galleries, and surface coverage were estimated by X-ray diffraction measurements and model calculations. The effect of organophilization on the properties of polypropylene/clay composites was determined by the measurement of tensile properties. The results showed that the surface energy of uncoated layered silicates is large; thus, the forces keeping the layers together are very strong. The long chain surfactants used for the coating of montmorillonite orientate more or less parallel to the surface and usually cover the platelets in a single layer in commercial silicates. Surplus surfactant is not located in the galleries, but among the particles, and might influence the properties of composites negatively. Organophilization leads to the drastic decrease of surface free energy. Surface tension of all coated clays is practically the same, irrespective of the type of the surfactant used for treatment. Low surface energy leads to weaker forces between the layers, which might facilitate exfoliation. This effect can be further enhanced by the use of surfactants with two long aliphatic chains, one of which orientates vertically to the surface, leading to larger gallery distance. Polymer/silicate interaction also decreases as an effect of decreasing surface tension proved by the decrease of tensile yield stress of polypropylene/montmorillonite composites. Besides surface tension, the exfoliation of layered silicates is influenced by several other factors as well, like gallery distance, mutual solubility of the components, competitive adsorption, or possible chemical reactions.

11.
J Colloid Interface Sci ; 269(1): 143-52, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14651906

RESUMO

CaCO3 fillers were investigated by inverse gas chromatography (IGC) to determine the dispersion component of their surface tension as well as their acid-base character. Because of the high energy of the filler surface, it readily adsorbs water, thus the parameters measured by IGC depend on the conditioning temperature, as well as on the measurement conditions. As a consequence, the determined surface characteristics are not material constants; different fillers or the effect of coating can be compared only under standard conditions. The use of the same conditioning and measurement temperature eliminates the effect of measurement time. Under appropriate standard conditions the acid-base characteristics of the filler can be determined reliably. However, the accuracy of the determination and the value of the derived parameters depend very much on the selected approach and on the acid-base constants used for the probe molecules. A critical analysis of the approaches used in the current literature pointed out those that yield the most reasonable and accurate values. The results prove that the surface of CaCO3 is strongly basic in character. Coating significantly reduces basicity. Surprisingly, the filler coated with an amount of stearic acid resulting in minimum surface tension showed relatively strong acidity, which indicates a coating exceeding monolayer coverage and/or the uneven distribution of the surfactant on the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...