Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(37): 374002, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195384

RESUMO

Owing to the great potential of iron oxide nanoparticles (NPs) for nanomedicine, large efforts have been made to better control their magnetic properties, especially their magnetic anisotropy to provide NPs able to combine imaging by MRI and therapy by magnetic hyperthermia. In that context, the design of anisotropic NPs appears as a very promising and efficient strategy. Furthermore, their bioactive coating also remains a challenge as it should provide colloidal stability, biocompatibility, furtivity along with good water diffusion for MRI. By taking advantage of our controlled synthesis method of iron oxide NPs with different shapes (cubic, spherical, octopod and nanoplate), we demonstrate here that the dendron coating, shown previously to be very suitable for 10 nm sized iron oxide, also provided very good colloidal, MRI and antifouling properties to the anisotropic shaped NPs. These antifouling properties, demonstrated through several experiments and characterizations, are very promising to achieve specific targeting of disease tissues without affecting healthy organs. On the other hand, the magnetic hyperthermia properties were shown to depend on the saturation magnetization and the ability of NPs to self-align, confirming the need of a balance between crystalline and dipolar magnetic anisotropies.

2.
Mol Pharm ; 15(2): 536-547, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29298480

RESUMO

The biodistribution of dendronized iron oxides, NPs10@D1_DOTAGA and melanin-targeting NPs10@D1_ICF_DOTAGA, was studied in vivo using magnetic resonance imaging (MRI) and planar scintigraphy through [177Lu]Lu-radiolabeling. MRI experiments showed high contrast power of both dendronized nanoparticles (DPs) and hepatobiliary and urinary excretions. Little tumor uptake could be highlighted after intravenous injection probably as a consequence of the negatively charged DOTAGA-derivatized shell, which reduces the diffusion across the cells' membrane. Planar scintigraphy images demonstrated a moderate specific tumor uptake of melanoma-targeted [177Lu]Lu-NPs10@D1_ICF_DOTAGA at 2 h post-intravenous injection (pi), and the highest tumor uptake of the control probe [177Lu]Lu-NPs10@D1_DOTAGA at 30 min pi, probably due to the enhanced permeability and retention effect. In addition, ex vivo confocal microscopy studies showed a high specific targeting of human melanoma samples impregnated with NPs10@D1_ICF_Alexa647_ DOTAGA.


Assuntos
Melaninas/metabolismo , Melanoma/diagnóstico por imagem , Nanopartículas/química , Compostos Radiofarmacêuticos/administração & dosagem , Neoplasias Cutâneas/diagnóstico por imagem , Animais , Biópsia , Linhagem Celular Tumoral/transplante , Humanos , Injeções Intravenosas , Lutécio/química , Imageamento por Ressonância Magnética , Masculino , Melanoma/patologia , Camundongos , Microscopia Confocal , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Polímeros/química , Radioisótopos/química , Cintilografia , Compostos Radiofarmacêuticos/química , Pele/diagnóstico por imagem , Pele/patologia , Neoplasias Cutâneas/patologia , Distribuição Tecidual
3.
J Mater Chem B ; 5(26): 5152-5164, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264101

RESUMO

Superparamagnetic spherical iron oxide nanoparticles of 10 nm diameter have been synthesized by thermal decomposition and grafted through a direct ligand exchange protocol with two dendrons bearing respectively a monophosphonic anchor (D2) or a biphosphonic tweezer (D2-2P) at their focal point. Physico-chemical characterization techniques such as dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometry were used to assess their composition, colloidal stability and magnetic properties. High-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy studies have been conducted to understand the organic shell composition and to determine both the grafting rate of the dendrons onto the nanoparticle surface and the influence of the remaining oleic acid originating from the synthesis protocol on the cellular uptake. Both dendronized IONPs showed moderate in vitro toxicity (MTT and LDH tests) in human cancer and primary cell lines. Furthermore, in vivo MRI studies showed high contrast enhancement as well as renal and hepatobiliary excretions and highlighted the influence of the grafting anchor (mono- versus bi-phosphonate) on the in vivo fate of dendronized magnetic iron oxides.

4.
J Mater Chem B ; 3(8): 1484-1494, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262421

RESUMO

The functionalization of spherical superparamagnetic iron oxide nanoparticles (SPION) of 10 nm with a linear monophosphonate (L1) and also PEGylated mono-phosphonated dendrons of growing generation (D2-G1, -G2 and -G3) yielded dendritic nano-objects of 15 to 30 nm in size, stable in physiological media and showing both renal and hepatobiliary elimination. The grafting of the different molecules has been confirmed by IR spectroscopy and elemental analysis. The colloidal stability of functionalized NS10 has been evaluated in water and in different physiological media. All functionalized NS10 were stable over a long period of time and displayed a mean hydrodynamic diameter smaller than 50 nm whatever the molecule architecture or dendron generation. Only the NS10@L1 showed less stability in biological media at high ionic concentration. NMRD profiles and relaxivity measurements highlighted the influence of the molecule architecture on the water diffusion close to the magnetic core thus influencing the relaxation properties at low magnetic field. Coupling of a fluorescent dye on the functionalized NS10 allowed investigating their biodistribution and highlighting urinary and hepato-biliary eliminations.

5.
J Mater Chem B ; 2(13): 1779-1790, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261515

RESUMO

A majority of MRI procedures requiring intravascular injections of contrast agents are performed with paramagnetic chelates. Such products induce vascular signal enhancement and they are rapidly excreted by the kidneys. Unfortunately, each chelate is made of only one paramagnetic ion, which, taken individually, has a limited impact on the MRI signal. In fact, the detection of molecular events in the nanomolar range using T1-weighted MRI sequences requires the design of ultra-small particles containing hundreds of paramagnetic ions per contrast agent unit. Ultra-small nanoparticles of manganese oxide (MnO, 6-8 nm diameter) have been developed and proposed as an efficient and at least 1000× more sensitive "positive" MRI contrast agent. However no evidence has been found until now that an adequate surface treatment of these particles could maintain their strong blood signal enhancement, while allowing their rapid and efficient excretion by the kidneys or by the hepatobiliairy pathway. Indeed, the sequestration of MnO particles by the reticuloendothelial system followed by strong uptake in the liver and in the spleen could potentially lead to Mn2+-induced toxicity effects. For ultra-small MnO particles to be applied in the clinics, it is necessary to develop coatings that also enable their efficient excretion within hours. This study demonstrates for the first time the possibility to use MnO particles as T1 vascular contrast agents, while enabling the excretion of >70% of all the Mn injected doses after 48 h. For this, small, biocompatible and highly hydrophilic pegylated bis-phosphonate dendrons (PDns) were grafted on MnO particles to confer colloidal stability, relaxometric performance, and fast excretion capacity. The chemical and colloidal stability of MnO@PDn particles were confirmed by XPS, FTIR and DLS. The relaxometric performance of MnO@PDns as "positive" MRI contrast agents was assessed (r1 = 4.4 mM-1 s-1, r2/r1 = 8.6; 1.41 T and 37 °C). Mice were injected with 1.21 µg Mn per kg (22 µmol Mn per kg), and scanned in MRI up to 48 h. The concentration of Mn in key organs was precisely measured by neutron activation analysis and confirmed, with MRI, the possibility to avoid RES nanoparticle sequestration through the use of phosphonate dendrons. Due to the fast kidney and hepatobiliairy clearance of MnO particles conferred by PDns, MnO nanoparticles can now be considered for promising applications in T1-weighted MRI applications requiring less toxic although highly sensitive "positive" molecular contrast agents.

6.
Contrast Media Mol Imaging ; 6(3): 132-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698771

RESUMO

Functionalized iron oxide nanoparticles have attracted an increasing interest in the last 10 years as contrast agents for MRI. One challenge is to obtain homogeneous and stable aqueous suspensions of iron oxide nanoparticles without aggregates. Iron oxide nanoparticles with sizes around 10 nm were synthesized by two methods: the particle size distribution in water suspension of iron oxide nanoparticles synthesized by the co-precipitation method was improved by a process involving two steps of ligand exchange and phase transfer and was compared with that of iron oxide nanoparticles synthesized by thermal decomposition and functionalized by the same dendritic molecule. The saturation magnetization of dendronized nanoparticles synthesized by thermal decomposition was lower than that of nanoparticles synthesized by co-precipitation. The r(2) relaxivity values were shown to decrease with the agglomeration state in suspension and high r(2) values and r(2) /r(1) ratios were obtained with nanoparticles synthesized by co-precipitation by comparison with those of commercial products. Dendronized iron oxide nanoparticles thus have potential properties as contrast agent.


Assuntos
Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Meios de Contraste/síntese química , Dendrímeros , Magnetismo , Tamanho da Partícula , Suspensões
7.
Dalton Trans ; (23): 4442-9, 2009 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-19488441

RESUMO

The grafting of pegylated dendrons on 9(2) nm and 39(5) nm iron oxide nanoparticles in water, through a phosphonate group as coupling agent has been successfully achieved and its mechanism investigated, with a view to produce biocompatible magnetic nano-objects for biomedical applications. Grafting has been demonstrated to occur by interaction of negatively charged phosphonate groups with positively charged groups and hydroxyl at the iron oxide surface. The isoelectric point of the suspension of dendronized iron oxide nanoparticles is shifted towards lower pH as the amount of dendron increases. It reaches 4.7 for the higher grafting rate and for both particle size. Thus, the grafting of molecules using a phosphonate group allows stabilizing electrostatically the suspensions at physiological pH, a prerequisite for biomedical applications. Moreover the grafting step has been shown to preserve the magnetic properties of iron oxide nanoparticles due to super-super exchange interactions through the phosphonate group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...